Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Antimalarial Inhibitors that Target the Plasmodial Surface Anion Channel (PSAC) Protein and Development of the PSAC Protein as Vaccine Targets

There are two related technologies, the first being small molecule inhibitors of the malarial plasmodial surface anion channel (PSAC) and the second being the PSAC protein itself as a vaccine candidate. The PSAC protein is produced by the malaria parasite within host erythrocytes and is crucial for mediating nutrient uptake. In vitro data show that the PSAC inhibitors are able to inhibit growth of malaria parasites, have high specificity, and low toxicity.

Small Molecule MRS5474 with Anticonvulsant Activity for Treatment of Epilepsy

Adenosine modulates many physiological processes by activating specific adenosine receptors. These adenosine receptors play a critical role in the regulation of cellular signaling and are broadly distributed throughout the body. Thus, the ability to modulate adenosine receptor-mediated signaling is an attractive therapeutic strategy for a broad range of diseases. This technology relates to a group of compounds that display high affinity and specificity for the A1 adenosine receptor subtype.

Methods and Composition for Identification of Variants of JC Virus DNA; An Etiologic Agent for Progressive Multifocal Leukoencephalopathy (PML)

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. The finding of JCV DNA in the patients with neurological symptoms of PML is a diagnostic criterion and is needed to confirm the diagnosis of PML to rule out other neurological conditions. Certain JC virus variants are known to have a greater association with PML. For example, "Prototype" JC virus is far more pathogenic than "Archetype" JC virus.

Modified Peptide Nucleic Acids (PNAs) for Detection of DNA or RNA and Identification of a Disease or Pathogen

The NIH announces a novel method for fast, simple, and accurate detection of nucleic acids outside the modern laboratory. Nucleic acid testing is highly specific and often provides definitive identification of a disease or pathogen. Methods to detect nucleic acid sequences and identify a disease or pathogen are dominated by PCR, but applying PCR-based techniques in remote settings is challenging. Researchers at the NIH have developed a universal, colorimetric, nucleic acid-responsive diagnostic system that uses two short peptide nucleic acid (PNA) probes and does not rely on PCR.

Background-Free Fluorescent Nanodiamond Imaging

Available for licensing and commercial development are intellectual property rights covering a method of imaging a biological specimen (e.g., human tissue) using fluorescent nanodiamonds implanted into the subject of interest, applying a magnetic field to said subject and producing a resultant image by a net juxtaposition of a second acquired image. This process suppresses the background and permits selective imaging of the nanodiamonds in the presence of background fluorescence that exceeds the signal from the nanodiamonds.

Highly Potent and Selective Deubiquitinating Enzyme Inhibitor

Available for licensing are inhibitors that target the USP1/ UAF1 deubiquitinating enzyme (DUB) complex. The FDA approval and commercial success of Velcade®, a small molecule proteasome inhibitor, has established the ubiquitin-proteasome system (UPS) as a valid target for anticancer treatment. However, proteasome inhibitors in general suffer from a narrow therapeutic index and acquired resistance. A promising alternative to proteasome inhibition has been to target the enzymes upstream of proteasome-mediated protein degradation, i.e.