Nanoparticles for the targeted treatment of infected cells

Current treatments for cancer and viral infection are limited remedies that often suppress cell or viral replication rather than eliminate diseased cells entirely from the body. A further limitation is that these therapies often compromise healthy cells as well, leaving problems of recurrence and side effects.

Researchers at developed a novel therapeutic nanoparticle (NP) system harboring therapeutic small siRNA that can significantly enhance effectiveness and specificity of treatments by killing diseased cells.

Composite Gels and Methods of their Use in Tissue Repair, Drug Delivery, and as Implants

Gel materials, particularly hydrogels, typically lose their mechanical strength and stiffness as they swell. This property  limits their use in both biological (e.g., cartilage and ECM repair) and non-biological (e.g., sealant) applications. Innovative materials in both medical and non-medical application areas are sorely needed.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Neurites of the central nervous system can be conceptualized as cylindrical pores with finite lengths and radii. In response to physical trauma, axons may assume a “beaded” morphology which alters their ability to conduct electrical impulses, impairing brain function. These microstructural changes are thought to underlie some of the cognitive defects observed in patients with traumatic brain injury (TBI). Current methods for characterizing traumatic brain injury (TBI) cannot provide microstructural detail on the 3-dimensional shape of axonal segments.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) have developed orthotopic allograft models for pancreatic cancer that utilize low passage primary pancreatic adenocarcinoma cells or tumor fragments implanted into the cancer-free pancreata of recipient syngeneic immunocompetent mice. Tumor development in these models is more synchronized, latency is substantially shortened, and tumors develop only in one location, as pre-determined by the choice of a site for cells/tumor fragment implantation.

Aryl Hydantoin Heterocycle Compounds that Target the Androgen Receptor for Prostate Cancer Treatment

Prostate cancer is the most prevalent form of cancer among all men in the United States (US). It is also the second leading cause of cancer-related deaths in the US among men, largely due to the progressively treatment resistant nature of the disease. Treatment options for early stage prostate cancer include watchful waiting, radical prostatectomy, radiation therapy, and importantly androgen-deprivation therapy (ADT). Prostate cancer is dependent on androgen hormones, such as testosterone, for sustaining and promoting growth.

Fatty Acid Derivatives and Their Use for the Treatment and Prevention of Autoimmune, Inflammatory, and Pain Disorders

The discovery and selection of suitable compounds for the treatment and prevention of autoimmune, inflammatory, and pain disorders is a significant challenge. Researchers at National Institute of Aging (NIA) mitigated this issue. They discovered and synthesized numerous novel fatty acid derivatives (novel small molecules) that may ameliorate these conditions and provide treatment options for these disorders. In a relevant rat model, the fatty acid derivatives developed by NIA demonstrated:

Method for Assembling Decellularized Tissue Extracellular Matrix in 3D Tumor Spheroids

Cell culture investigations using spheroids and organoid models have had a major impact on biomedical advancement as alternative sources for costly, in vivo animal testing.  However, these 3-D cell constructs are limited in that they do not integrate extracellular components within the structure important for more reliable and accurate biological responses.  Extracellular matrix (ECM) from decellularized tissues provide a physical scaffolding and offers crucial biochemical and biomechanical cues for cellular constituents.

Iodonium Analogs as Inhibitors of NADPH Oxidases and other Flavin Dehydrogenases and their Use for Treating Cancer

Diverse human cancers like colorectal, pancreatic, ovarian, melanoma, and pre-cancers express NADPH oxidases (NOX) at high levels. Reactive oxygen species (ROS) produced from metabolic reactions catalyzed by NOX in tumors are essential to the tumor’s growth. Though drugs that inhibit ROS production by NOX could be effective against a variety of human cancers, these types of drugs are not widely available.