New Class of Immunotoxins with Extended Half-Life and High Anti-Tumor Activity

Recombinant immunotoxins (RITs) constitute a promising solution to hematologic cancers (e.g., Multiple Myeloma [MM]). RITs are chimeric proteins composed of a targeting domain fused to a bacterial toxin. Upon binding to a cancer cell displaying the target antigen, RITs are internalized, metabolized and the released toxin kills the cell. While highly active and effective, current RITs have short half-lives, requiring them to be used in high concentrations for treatment. At such high concentrations, RITs may show nonspecific activity and kill healthy cells.

A Target for the Development of Diagnostics and Therapeutics for Abnormal Hematopoiesis

The zinc finger protein ZFP36L2 has been shown by the inventors to play an essential role in hematopoiesis, a process that is dysregulated in hematological cancers, anemia, and other conditions. Thus, ZFP36L2 has promise for use in a diagnostic test to detect abnormal hematopoiesis, or as a target for the development of therapeutics to treat abnormal hematopoiesis.

Using FDA-approved Small Molecule Drug Reserpine and related compounds (especially Halofantrine) To Protect Photoreceptors In Inherited Retinal Degenerations And Age-Related Macular Degeneration

Summary: 
The National Eye Institute seeks research co-development partners and/or licensees for a therapy using an FDA-approved small molecule drug reserpine (and related compounds especially halofantrine) that prevents photoreceptor cell death in retinal degenerations.

Methods To Regulate Metabolism For Treatment Of Neural Injuries and Neurodegeneration

Axonal injury and subsequent neuronal death underpin the pathology of many neurological disorders from acute neural injuries (motor vehicle crashes, combat related injuries, traumatic brain injuries) to neurological diseases (multiple sclerosis, glaucoma). In the central nervous system (CNS), microglia help respond to CNS injuries by mediating the immune response and increasing inflammation at the site of injury. 

Gene Therapy for Treatment of CRX-Autosomal Dominant Retinopathies

Mutations in the cone rod homeobox (CRX) transcription factor lead to distinct retinopathy phenotypes, including early-onset vision impairment in dominant Leber congenital amaurosis (LCA). Adeno-Associated virus (AAV) vector-mediated delivery of a CRX cDNA under the control of a CRX promoter region partially restored photoreceptor phenotype and expression of phototransduction genes in an in vitro model of CRX-LCA.

Using Artificial Intelligence To Diagnose Uveitis

Summary: 
The National Eye Institute seeks research co-development partners and/or licensees for a deep learning algorithm that can identify retinal vasculitis using color fundus images.

Description of Technology: 
Uveitis is caused by inflammation in the eye that can cause pain and reduce vision. The rate of uveitis in the United States is 1 in every 200 people with eye-related irritation. Permanent symptoms such as vision loss can occur if untreated. Therefore, early detection is crucial. 

Strategies to Protect Mammalian Neural Tissue Against Cold and Potentially Other Metabolic Stresses and Physical Damages

Researchers at the National Eye Institute (NEI) have discovered an invention describing a composition and method(s) of using such composition for preserving viability of cells, tissues, or organs at a low temperature (around 4ºC). Current cold storage solutions or methods for cells, tissues, and organs are suboptimal due to irreversible damage to cold-sensitive tissue or organ transplants that need a longer term of storage for facilitating clinical practices.