Improved PE-based Targeted Toxins: A Therapeutic with Increased Effectiveness

Targeted toxins (e.g., immunotoxins) are therapeutics that have at least two important components: (1) a toxin domain that is capable of killing cells and (2) a targeting domain that is capable of selectively localizing the toxic domain to only those cells which should be killed. By selecting a targeting domain that binds only to certain diseased cells (e.g., a cell which only expresses a cell surface receptor when in a diseased state), targeted toxins can kill the diseased cells while allowing healthy, essential cells to survive.

New Class of Immunotoxins with Extended Half-Life and High Anti-Tumor Activity

Recombinant immunotoxins (RITs) constitute a promising solution to hematologic cancers (e.g., Multiple Myeloma [MM]). RITs are chimeric proteins composed of a targeting domain fused to a bacterial toxin. Upon binding to a cancer cell displaying the target antigen, RITs are internalized, metabolized and the released toxin kills the cell. While highly active and effective, current RITs have short half-lives, requiring them to be used in high concentrations for treatment. At such high concentrations, RITs may show nonspecific activity and kill healthy cells.

A Target for the Development of Diagnostics and Therapeutics for Abnormal Hematopoiesis

The zinc finger protein ZFP36L2 has been shown by the inventors to play an essential role in hematopoiesis, a process that is dysregulated in hematological cancers, anemia, and other conditions. Thus, ZFP36L2 has promise for use in a diagnostic test to detect abnormal hematopoiesis, or as a target for the development of therapeutics to treat abnormal hematopoiesis.

Magnetic Resonance Arterial Wall Imaging Methods that Compensate for Patient Aperiodic Intrinsic Cardiac, Chest Wall, and Blood Flow-Induced Motions

The technology includes MRI methods, systems, and software for reliably imaging vasculature and vascular wall thickness while compensating for aperiodic intrinsic motion of a patient during respiration. To overcome the loss of the orthogonality due to uncompensated residual motions and after a lapse of time equal to the trigger delay commenced at the cardiac cycle, the system acquires multiple consecutive time-resolved images of the arterial wall. The cine images are processed offline and a wall thickness measurement is produced.

Use of Acetalax for Treatment of Triple Negative Breast Cancer

Triple negative (progesterone receptor (PR)-, estrogen receptor (ER)-, human epidermal growth receptor 2 (HER2)-) breast cancer (TNBC) is an aggressive subtype that affects 15-20% of the 1.7 million cases of breast cancer occurring annually.  Currently, standard treatments of TNBC include cytotoxic chemotherapies, surgery, and radiation. However, TNBC readily becomes resistant to chemotherapy, and those with TNBC are more likely to have a recurrence or die within five years compared to those with other breast cancer types.

Iodonium Analogs as Inhibitors of NADPH Oxidases and other Flavin Dehydrogenases and their Use for Treating Cancer

Diverse human cancers like colorectal, pancreatic, ovarian, melanoma, and pre-cancers express NADPH oxidases (NOX) at high levels. Reactive oxygen species (ROS) produced from metabolic reactions catalyzed by NOX in tumors are essential to the tumor’s growth. Though drugs that inhibit ROS production by NOX could be effective against a variety of human cancers, these types of drugs are not widely available.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) have developed orthotopic allograft models for pancreatic cancer that utilize low passage primary pancreatic adenocarcinoma cells or tumor fragments implanted into the cancer-free pancreata of recipient syngeneic immunocompetent mice. Tumor development in these models is more synchronized, latency is substantially shortened, and tumors develop only in one location, as pre-determined by the choice of a site for cells/tumor fragment implantation.

TACSTD2 in HCV Infection and Hepatocellular Carcinoma: Transcriptomics Insights

This technology involves studying the role of the Tumor-Associated Calcium Signal Transducer 2 (TACSTD2) gene in Hepatitis C Virus (HCV) infection and hepatocellular carcinoma. Researchers perform transcriptomics analysis on liver specimens from HCV-infected patients, identify TACSTD2 as a key gene, and create a stable cell line that overexpresses TACSTD2 to investigate its impact on HCV infection and replication. This technology aims to provide insights into the molecular mechanisms of HCV infection and its association with liver cancer.