TYROSINASE Gene Therapy for Oculocutaneous Albinism type 1A
Summary:
The National Eye Institute seeks research co-development partners and/or licensees for an adeno-associated viral gene therapy for Oculocutaneous Albinism type 1A.
Summary:
The National Eye Institute seeks research co-development partners and/or licensees for an adeno-associated viral gene therapy for Oculocutaneous Albinism type 1A.
Summary:
The National Cancer Institute (NCI) has identified HLA-A11:01-restricted T Cell Receptors (TCRs) targeting the KRAS G13D mutation. The NCI seeks licensees for the use of these TCRs in research.
Description of Technology:
Summary:
The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for clinical validation and to further develop the technology.
Description of Technology:
Summary:
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for engineered chimeric snoRNA guides that recruit NAT10 to a specific target and cause directed acetylation of the target. They could be used to treat haploinsufficiency-associated disorders or diseases.
Description of Technology:
The development of an effective HIV vaccine has been ongoing. HIV sequence diversity and immunodominance are major obstacles in the design of an effective vaccine. Researchers at the National Cancer Institute (NCI) developed a novel vaccine strategy combining both DNA and mRNA vaccination to induce an effective immune response. This combination strategy could also be used to develop vaccines against cancer or other infectious diseases (ex. SARS-CoV-2).
Over 34 million Americans are living with diabetes. An estimated 6.5 million Americans are living with Alzheimer’s disease (AD) and type 2 diabetes mellites (T2DM). Amyloidosis due to aggregation of amyloid-β is key pathogenic event in AD, whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islet leads to β-cell dysfunction. A hallmark feature of T2DM is the accumulation of islet amyloid polypeptide fibrils in pancreatic islets. Such accumulations form amyloid plaques and cause apoptosis of -cells of islets.
CD22 is a protein expressed by normal B cells and B-lymphoid malignancies. Its limited tissue expression pattern makes it a safe antigen for targeted therapies, such as T-cell Receptor (TCR)-T cell therapy. CD22-targeting therapies already on the market, mainly antibody-immunotoxin conjugates and chimeric antigen receptors (CAR)-T cells, have limitations such as resistance to treatment and/or side effects. Resistance mechanisms to the current CD22 therapies involve loss or modulation of target antigen on the cell surface.
Biofilms are complex microbial communities, surface attached and held together by self-produced polymer matrices. These matrices are mainly composed of polysaccharides, secreted proteins and nucleic acids. Poly-N-acetyl glucosamine (PNAG) is a highly conserved surface polysaccharide expressed by a range of bacterial, fungal and protozoan microorganisms.
Cyclin-dependent kinase inhibitor 2A gene, also known as CDKN2A, is a tumor suppressor gene and is commonly inactivated through somatic mutations in many human cancers. For example, inactivation of CDKN2A is highly prevalent in melanoma, gastrointestinal and pancreatic cancers. Through germline mutations, CDKN2A is associated with predisposition for a variety of cancers, including melanoma and pancreatic cancers. Despite the high frequency of CDKN2A mutations in cancer, there have been no successful therapies targeting these mutations to date.
Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.