Phase Sensitive Motion Correction and T1 Mapping for Cardiovascular Magnetic Resonance Imaging

This technology includes a method of correcting the motion during T1 mapping using cardiovascular magnetic resonance imaging (MRI). Ischemic heart disease is the leading cause of death in the United States. The lack of blood supply among myocardial tissue, especially for scar regions, changes the T1 relaxation value of heart muscles. The non-invasive quantification of T1 value of myocardium (T1 mapping) is therefore of great importance for the diagnosis and treatment of cardiovascular disease.

A Highly Efficient Differentiation Protocol for Placental Cells Derived from Human Pluripotent Stem Cells for Diagnostic and Therapeutic Applications

This technology includes in vitro-generated trophectoderm (TE) cells, which are ideal for modeling diseases of the placenta, drug screening, and cell-based therapies. The TE lineage which gives rise to placental cells during early human development. Derivation of definitive placental cells from human pluripotent stem cells in culture remains controversial and so far, placental cells can only be derived directly from primary placental tissue, which largely limits their access and study in the laboratory.

Electronic Fringe Scanning for the Improvement of Medical Imaging Technology

This technology includes an electronic method for fringe scanning in grating-based phase-contrast imaging, which enhances x-ray phase-contrast imaging. Traditional methods use high-density gratings and require fine grating fringes, finer than the detector's resolution, necessitating fringe scanning to obtain phase-contrast information. This process typically involves complex and precise movements of a grating for each image, challenging in applications like medical computed tomography that demand rapid gantry rotation and acquisition of numerous projection images in less than a second.

An Automated System for Myocardial Perfusion Mapping and Machine Diagnosis to Detect Ischemic Heart Disease with First-pass Perfusion Cardiac Magnetic Resonance Imaging

This technology includes a fully automated computer aided diagnosis system to quantify myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) pixel maps from the first-pass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. This system performs automated image registration, motion compensation, segmentation, and modeling to extract quantitative features from different myocardial regions of interest.

Bivalent Tn5 Complex and its Application to Map Enhancer-Promoter Interactions for Use in Diagnostics

This technology includes a new reagent, termed bivalent Tn5 complex, and applied it to mapping genome-wide enhancer-promoter interactions to be utilized for disease diagnostics. Chromatin structure is critical for regulating transcription in normal development and disease states. In particular, the interaction between enhancers and promotes are essential for the temporospatial control of gene expression.

Transcatheter MRI-guided Implantable Cavopulmonary Bypass Endograft for the Treatment of Congenital Heart Disease

This technology includes a catheter-delivered endograft designed to treat congenital heart disease without surgery. The specific surgical procedure averted is cavopulmonary bypass graft. The key innovations are features to effect distal end-to-side anastomosis and proximal end-to-end anastomosis without surgery. The system operates under X-ray and MRI guidance.

Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Mass Spectrometry Derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Multiview Super-resolution Microscopy System and Methods for Research and Diagnostic Applications

This technology includes a microscopy technique that combines the strengths of multiview imaging (better resolution isotropy, better depth penetration) with resolution-improving structured illumination microscopy (SIM). The proposed microscope uses a sharp line-focused illumination structure to excite and confocally detect sample fluorescence from 3 complementary views.