Immunotherapy Combination Treatment Containing both TLR4 and TLR2/6 Agonists, a Checkpoint Inhibitor, and a STING agonist.

Melanoma is an aggressive form of skin cancer that commonly becomes metastatic, spreading to nearby tissue or other parts of the body, including distant skin or subcutaneous sites such as the lungs, liver, brain, or bone. Metastatic melanoma is very drug resistant and difficult to treat, and therefore, the prognosis for these patients is poor. There is a need for effective therapies for aggressive melanoma and other drug-resistant solid cancers. 

Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene

The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

Cyclin-dependent kinase inhibitor 2A gene, also known as CDKN2A, is a tumor suppressor gene and is commonly inactivated through somatic mutations in many human cancers. For example, inactivation of CDKN2A is highly prevalent in melanoma, gastrointestinal and pancreatic cancers. Through germline mutations, CDKN2A is associated with predisposition for a variety of cancers, including melanoma and pancreatic cancers. Despite the high frequency of CDKN2A mutations in cancer, there have been no successful therapies targeting these mutations to date.

High Efficacy Vaccine and Microbicide Combination For Use Against HIV

Human immunodeficiency virus (HIV) remains a major global health challenge despite the advancement made in development of effective antiretrovirals (ARVs). ARVs are effective at limiting replication and spread of the virus, and progression to acquired immuno-deficiency syndrome (AIDS). However, ARVs often lead to emergence of drug-resistant virus strains insensitive to treatment and with toxic effects following long-term usage.

Cell Lines that Constitutively Express High-Frequency KRAS and P53 Mutations and Human Leukocyte Antigens (HLAs)

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

BRAF is an oncogene that encodinges a serine-threonine kinase (B-Raf kinase) important in regulating cell growth and differentiation. Spontaneous mutations in the BRAF gene allow cells to continuously divide, leading to the development of cancer. A substitution of glutamic acid for valine at amino acid number 600 (designated V600E) accounts for 90% of BRAF mutations and is a driver of many cancers. The V600E mutation is present in ~3% of all cancer cases, representing a patient population of 540,000 patients per year.

Neoantigen T Cell Therapy with Neoantigen Vaccination as a Combination Immunotherapy Against Cancer

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes autologous, antitumor T cells to attack tumors through recognition of tumor-specific mutations, or neoantigens. A major hurdle in the development of ACT is the exhausted phenotype exhibited by many neoantigen-specific T cells, which limits their efficacy and prevents a sustained immune response. 

Use of Repurposed Compounds for the Treatment of Alzheimer’s Disease

There are no effective treatments for Alzheimer’s disease (AD), a progressive brain disease that slowly destroys a person’s memory, cognitive skills and ability to carry out the simplest tasks. AD affects more than 5 million individuals in the United States and ranks as the sixth leading cause of death. The ε4 allele of the apolipoprotein-E (APOE) gene is the strongest genetic risk factor for sporadic or late-onset AD. Heterozygous carriers of the ε4 allele are at three-to-four times greater risk; homozygous carriers are at ten times greater risk.

Mouse Lines with Fluorescently Labelled Membrane Proteins Regulating Cellular Motility and Membrane Trafficking

Cell motility and membrane trafficking play important roles in regulating cell division, cell migration, cell death and autophagy. Impairment of these processes can result in enhanced cell proliferation and survival and increased migration and invasion leading to cancer. Several proteins involved in cell motility and membrane trafficking have been shown to be dysregulated in various cancers. There is therefore a need for development of animal models for studying the roles of these proteins in cancer and their responses to drug treatment in vivo.

Method for Direct Identification of Neoantigen-Specific TCRs from Tumor Specimens by High-Throughput Single-Cell Sequencing

Cancer immunotherapy approaches, such as adoptive cell transfer (ACT), proved effective against many cancer types. Yet, post-treatment analyses of ACT have suggested that efficacy may be enhanced by increasing the percentage of neoantigen-reactive T cells in the infused product. Neoantigens are new proteins that form on cancer cells when certain mutations occur in tumor DNA. Current techniques for identifying neoantigen-specific TCRs in T cell expression are labor-intensive, time-consuming and technically challenging.