Novel Peptide of <em>Streptococcus pneumoniae</em> Surface Adhesion A (PsaA) Protein Associated with Adherence and Uses Thereof – for Vaccine Candidate, Therapeutic and Diagnostic Development

Streptococcus pneumoniae (S. pneumonia), bacteria commonly referred to as pneumococcus, are a significant cause of disease resulting in 1.5 million deaths every year worldwide according to the World Health Organization. The major types of pneumococcal disease are pneumonia (lung infection), bacteremia (bloodstream infection), and meningitis (infection of the tissue covering of the brain and spinal cord). Less severe pneumococcal illnesses include ear and sinus infections.

New Anti-Influenza Virus Neuraminidase 9 (N9) Monoclonal Antibody – for Prevention or Treatment of H7N9 Influenza (Flu) A with Less Likelihood of Drug Resistance

H7N9 influenza viruses are predominately avian (bird) pathogens, however, since 2013, they have infected more than 1500 humans with a mortality rate of nearly 40% in confirmed cases. H7N9 viruses continue to be a threat to public health. Treatment for people infected with H7N9-subtype influenza A (H7N9) commonly includes the use of drugs that inhibit neuraminidase, a protein found on the virus’ surface. However, like other influenza viruses, H7N9 can become resistant to these drugs.

A Novel Reagent for Labeling PET Tracers at Trifluoromethyl Groups

The molecular imaging technique of positron emission tomography (PET) is an increasingly important tool in biomedical research and in drug discovery and development. Many small molecule drugs and potential PET radiotracers carry trifluoromethyl (CF3) groups. Because CF3 groups are generally considered to be metabolically stable, there is a strong interest in developing drugs with these groups.

Real-time PCR Detection of <em>Streptococcus pneumoniae</em> with High Sensitivity and Specificity

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and is also a frequent cause of bloodstream, brain and spinal cord, ear, and sinus infections. According to 2015 CDC data, an estimated 900,000 Americans get pneumococcal pneumonia each year and approximately 5-7% die from it annually. Accurate diagnosis and early treatment are important for improving patient outcomes.

Licensing Availability: Methods of Diagnosing and Treating CHAPLE, A Newly Identified Orphan Disease

This technology is directed towards a potential treatment for a new disease, CHAPLE (Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy), identified by NIAID researchers. CHAPLE is associated with GI symptoms and vascular thrombosis and is caused by loss-of-function variants in the gene encoding the complement regulatory protein CD55. The disease is caused by enhanced activation of the complement pathway and complement-mediated induction of intestinal lymphangiectasia and protein-losing enteropathy.

Potential Treatment for sickle-cell disease and thalassemia

The technology addresses treatment options for diseases such as sickle-cell and thalassemia. Traditionally, such beta-globinopathies are treated through bone marrow transplantation. However, this method is limited due to high treatment costs and finding a matched-donor. This relies on increasing fetal hemoglobin to potentially cure the disease. NIH inventors have identified a protein called Rio-Kinase 3 (RIOK3), that inhibits the production of fetal hemoglobin. Their work shows that inhibiting RIOK3 increases the production of fetal hemoglobin.

One-Step Random Amplification Method to Detect Extremely Low Input Nucleic Acids for Virome, Microbiome, and Metagenomics in Clinical and Biological Specimens

Clinical and biological specimens often contain microbial nucleic acid in extremely low quantities, presenting a significant challenge for the detection of viral and bacterial pathogens. This also prevents direct sequencing of non-culturable samples using next-generation sequencing (NGS). Currently, NGS library preparation on most platforms requires 0.1 ng to 10 µg of DNA or cDNA, while microbial or viral nucleic acids in clinically relevant specimens, such as blood, serum, respiratory secretions, cerebral spinal fluid, and stool, often contain less than 0.1 ng.

TRIAZOLE DERIVATIVES AS P2Y14 RECEPTOR ANTAGONISTS

The technology describes the composition of small molecule compounds that are antagonists of the P2Y14 receptor. Also provided are methods of using the compounds, including a method of treating a disorder, such as inflammation, diabetes, insulin resistance, hyperglycemia, a lipid disorder, obesity, a condition associated with metabolic syndrome, and asthma, and a method of antagonizing P2Y14 receptor activity in a cell.

P2Y14 Receptor Antagonists Containing A Biaryl Core

The technology discloses composition of compounds that fully antagonize the human P2Y14 receptor, with moderate affinity with insignificant antagonism of other P2Y receptors. Therefore, they are highly selective P2Y14 receptor antagonists. Even though there is no P2Y14 receptor modulators in clinical use currently, selective P2Y14 receptor antagonists are sought as potential therapeutic treatments for asthma, cystic fibrosis, inflammation and possibly diabetes and neurodegeneration.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.