Nipamovir: An Affordable, Oral Treatment for HIV Infection with a High Barrier to Resistance

This technology includes an oral treatment for HIV infection. Nipamovir is a low molecular weight mercaptobenzamide derivative that is simple to produce on kilogram scale and which can be used to lower or eliminate the infectivity of HIV. Extended treatment of Simian immunodeficiency virus (SIV)-infected macaques with Nipamovir lowers the viral load by 1 log unit, and eliminates the ability of remaining virus to infect other cells. Nipamovir shows similar antiviral activity in HIV-infected human cells. There are no toxic side-effects observed in animal studies with Nipamovir.

Heterocyclic P2Y14 Antagonists for the Treatment of Various Conditions

The technology discloses composition of compounds that are highly selective P2Y14 receptor antagonists,
with moderate affinity with insignificant antagonism of other P2Y receptors. These compounds might provide a
treatment for patients for various disease conditions, including lung inflammation, kidney inflammation,
asthma, diabetes, obesity, and neuropathic pain of diverse states. In vivo data using mouse lines with the
receptor knocked out in specific tissues showed that P2Y14 receptor antagonists act on adipocytes to improve

Treatment of the beta-globinopathies through inhibition of RIOK3 activity

Disorders of adult beta-globin synthesis, which include sickle cell disease (SCD) and beta-thalassemia, are the most common monogenic disorders in the world. While the curative potential of bone marrow transplantation has been demonstrated, this approach is limited to a small fraction of affected patients due to the requirement for an HLA-matched donor, the highly specialized approach that requires critical infrastructure, and the high cost.

Background-free Imaging by Selective Modulation of Nanodiamond Fluorescence Using a Magnetic Field

This technology includes the use of nanodiamonds to achieve background-free imaging. We present several techniques to reduce or eliminate background florescence by exploiting properties of the fluorescent nanodiamonds. In particular, magnetic field modulation of the fluorescence intensity offers a simple, robust, and easily adaptable method to obtain background free imaging in a variety of imaging modalities, i.e., fluorescence microscopy and wide field fluorescence animal imaging.

Clonal Spodoptera Frugiperda Cell lines for Enhanced Expression

This technology includes Spodoptera frugiperda (Sf9) cells which were developed to produce recombinant adeno-associated virus. The cells maintain a copy of the vector genome and for production, require infection with a single baculovirus that expresses either structural and nonstructural proteins to produce rAAV, or the non-structural (Rep) proteins to produce ceDNA.

Prazoles as Potential Broad Spectrum Anti-viral Agents

The technology described involves the use of a compound called prazole as an anti-viral agent specifically targeting HIV-1. It was found that prazole binds to a protein called Tsg101, which is crucial for the virus's life cycle. This binding disrupts the normal interaction of Tsg101 with another protein, ubiquitin, thereby inhibiting the release of HIV-1 particles from infected cells. Additionally, the interference caused by prazole leads to the degradation of the viral protein Gag within host cells.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

Antibody Targeting of Cell Surface Deposited Complement Protein C3d as a Treatment for Cancer

This technology includes monoclonal antibodies (mAb) that specifically and with high affinity bind the final complement components C3dg and C3d (subsequently referred to as C3d), which can be used to kill tumor cells that carry C3d on their cell surface. We show that tumor cells of patients treated with the therapeutic anti-CD20 mAb ofatumumab carry C3d on the cell surface and can bind and be killed by addition of anti-C3 mAbs. In contrast, further addition of more ofatumumab has only minimal effects.

Cell Lines of Dopaminergic Neurons Derived from Human Induced Pluripotent Stem Cell (iPSC) lines for Multiple Neurological Therapeutic and Diagnostic Uses

This technology includes three cell lines of dopaminergic neurons derived from human induced pluripotent stem cell (iPSC) line BC1, human iPSG line X1 and human embryonic stem cell (hESC) line H14 to be utilized in neurology research. These cell lines will be used for to study the biology of brain development and may also be used to test different characterization and differentiation assays. The dopaminergic neurons and/or their derivatives may also be used as controls in studies to screen for small molecules to change cell fate and/or to alleviate the phenotypes of various diseases.

Neuronal Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Therapeutic Development

This technology involves an innovative method for differentiating neural stem cells (NSCs) into neurons, primarily for use in basic science research and in developing therapies for brain and spinal cord disorders. Existing methods for generating neurons from NSCs typically result in high efficiency but low survival rates, especially when neurons are dissociated and regrown. This new method utilizes Life Technologies StemPro embryonic stem cell serum-free medium, which significantly enhances differentiation efficiency into neurons with minimal cell death.