Extremely Rapid Method to Isolate Neoantigen Reactive T Cell Receptors (TCRs)

Adoptive cell transfer (ACT) uses tumor infiltrating lymphocytes (TILs) that recognize unique antigens expressed by cancer cells (“neoantigens”). Neoantigen specific TIL administration in patients has resulted in long term regression of certain metastatic cancers. However, one of the challenges of ACT and engineered T cell receptor (TCR) therapies more broadly, is the identification and isolation of these mutation specific TILs and TCRs. Only a fraction of TILs in a given patient is known to be tumor reactive, while the majority are not useful for cell therapy.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

Adoptive cell transfer (ACT) uses tumor infiltrating lymphocytes (TILs) that recognize antigens expressed by cancer cells (neoantigens). Neoantigen specific TIL administration in patients has resulted in long-term regression of certain metastatic cancers. However, current procedures for TIL therapy are highly invasive, labor-intensive, and time consuming. The success of these procedures is limited and differs between patients and histologies.

Small Molecule Inhibitors of Histone Demethylases for Treating Rhabdomyosarcoma (RMS) and Other Cancers

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and makes up 3% of all childhood cancers. Aveloar Rhabdomyosarcoma is the most aggressive subtype and is primarily established through a chromosomal translocation resulting in the fusion protein PAX3-FOXO1. Despite aggressive therapy, the 5-year survival rate for patients with high risk or recurrent Fusion Positive RMS (FP-RMS) is low (~30% and ~17%, respectively). Therefore, new therapies targeting the PAX3-FOXO1 oncogenic driver are urgently needed.  

Parental A2780 Ovarian Cancer Cell Line and Derivative Cisplatin-resistant and Adriamycin-resistant A2780 Cell Lines

Ovarian cancer is one of the most common and lethal types of gynecological malignancies worldwide, accounting for approximately 295,000 new cases and 185,000 deaths annually. The high lethality rate is due to multiple reasons, including recurrence and the resistance of recurrent tumors to chemotherapy. Cell line models are crucial for preclinical cancer studies, to identify mechanisms of disease, to study drug resistance, and to screen for candidate therapeutics. 

A Method to Isolate Tumor Specific T-Cells or T-Cell Receptors from Peripheral Blood using In-vitro Stimulation of Memory T-Cells

Adoptive cell transfer (ACT) and T-cell receptor (TCR) therapies use lymphocytes that target somatic mutations expressed by tumors cells to treat cancer patients. One of the challenges of these therapies is the identification and isolation of mutation-specific cells and TCRs. While neoantigen specific cells are relatively abundant in the tumor, they are far less common in peripheral blood, a more accessible source of T cells. 

Chimeric Antigen Receptor (CAR) that Targets Chemokine Receptor CCR4 and its Use in Treating Cancer

The chemokine receptor, CCR4 is a seven transmembrane G protein-coupled cell surface receptor molecule with selective expression on cells of the hematopoietic system. In adult T cell leukemia (ATL), the cell-surface expression of CCR4 on leukemic cells has been found to be nearly universal. Therefore, a CCR4-directed chimeric antigen receptor (CAR) -cell may provide an effective therapeutic against ATL.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

The tumor-suppressor p53 protein plays a major role in tumor development. Most human cancers fail to normally activate wild-type p53, which is at least partly responsible for the unregulated growth of cancer cells and their failure to undergo apoptosis. While many chemotherapeutics enhance p53 levels, their non-specific DNA damage (genotoxicity) causes unfavorable side effects.