Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics
Most early work on CD133 was carried out using one of two monoclonal antibodies (mAbs), AC133 and AC141, which recognize an undefined glycosylated epitope of CD 133.
Most early work on CD133 was carried out using one of two monoclonal antibodies (mAbs), AC133 and AC141, which recognize an undefined glycosylated epitope of CD 133.
The invention listed below is owned by an agency of the U.S. Government and is available for licensing and/or co-development in the U.S. in accordance with 35 U.S.C. 209 and 37 CFR part 404 to achieve expeditious commercialization of results of federally-funded research and development.
Scientists at the National Cancer Institute developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials.
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma and consists of three subtypes: activated B-cell (ABC), germinal center B-cell (GBC), and primary mediastinal B-cell (PMB). Despite advances in the front-line therapy for DLBCL, approximately one-third of patients will relapse. Substantially worse outcomes have been reported for patients diagnosed with ABC DLBCL and treated with standard chemoimmunotherapy, suggesting the need for novel strategies that improve treatment outcomes.
The National Cancer Institute's Laboratory of Pathology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a method for target-activated microdissection.
The National Cancer Institute seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.
The National Institute on Aging's (NIA) Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.
A common symptom of many heart diseases is an abnormal heart rhythm or arrhythmia. While effectively improving the lives of many patients, implantable pacemakers have significant limitations such as limited power sources, risk of infections, potential for interference from other devices, and absence of autonomic rate modulation.
Several malignancies associated with a poor prognosis such as lung, pancreatic and colorectal cancers frequently harbor constitutively active KRAS mutants, which play a pivotal role in oncogenesis. Currently, there are no potentially curative treatments against most mutant KRAS harboring cancers once they become metastatic and unresectable. Despite intensive efforts to develop potent mutant KRAS inhibitors, none have shown a significant improvement to patients.
The MUC-1 tumor associated antigen has been shown to be overexpressed and/or underglycosylated in a wide range of human cancers. The C-terminus region of MUC-1 (MUC-1C) has been shown to be an oncogene and has been associated with a more aggressive phenotype in several different cancers.
Scientists at NIH have identified a process to select highly tumor-reactive T cells from a patient tumor sample based on the expression of four specific T cell surface markers: programmed cell death protein 1 (PD-1; CD279), 4-1BB (CD137), T cell lg-and mucin-domain-containing molecule-3 (TIM-3), and/or lymphocyte activation gene 3 (LAG-3). After this enriched population of tumor fighting T cells, primarily tumor infiltrating lymphocytes (TIL), is selected and expanded to large quantities, it gets re-infused into the patient via an adoptive cell transfer (ACT) regimen.