Methotrexate Analogs with Enhanced Efficacy and Safety Profile

Scientists at NCATS have developed an analog of Methotrexate (MTX) that incorporates the proteasome-targeting properties of E3-ubiquitin ligase small molecule ligands (MTX-PROTACs) to directly bind to the MTX target dihydrofolate reductase (DHFR) and mark the protein for proteasomal degradation. This unique property may dramatically lower the therapeutic dose required in a treatment setting.

Substituted Quinoline Analogs as Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors

Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Unbalanced expression levels of ALDHs have been associated with a variety of disease states such as alcoholic liver disease, Parkinson’s disease, obesity, and multiple types of cancers. ALDH1A1 also plays a major role in preserving the tumor microenvironment via differentiation, self-protection, and proliferation of cancer stem cells.

Compounds and Methods for Blocking Transmission of Malarial Parasites

Malaria continues to be a life-threatening disease, causing roughly 241 million cases and an estimated 627,000 deaths in 2020, mostly among African children, although in 2020 nearly half of the world’s population was at risk of malaria. There is a big financial burden for antimalarial treatment; direct costs (for example, illness, treatment, premature death) have been estimated to be at least US $12 billion per year and the cost in lost economic growth is many times more than that.

Use of Auranofin for the Treatment of Chronic Lymphocytic Leukemia (CLL)

This technology includes the use of auranofin for the treatment of Chronic Lymphocytic Leukemia (CLL). Auranofin is currently approved for the treatment of rheumatoid arthritis and has been shown to display anti-cancer activity. CLL is a blood and bone marrow disease that usually progresses over a lengthy period of time and normally occurs in middle-age adults. The current therapeutic options for CLL patients are limited, and there are few therapies under development.

Use of NCGC00117362, NCGC117328, NCGC00117505, NCGC00117477 and NCGC00117166 for the Treatment of Ovarian Cancer

This technology includes the use of a chemical series (compounds NCGC00117362, NCGC117328, NCGC00117505, NCGC00117477, NCGC00117166 and their analogs) as potential treatment for ovarian cancer. These compounds were identified through a high throughput screen (HTS) of 44,806 compounds implemented at NCATS using a layered 3D organotypic assay model of human ovarian cancer metastatic microenvironment containing primary human mesothelial cells, primary human fibroblasts, and extracellular matrix.

RALDH1 Inhibitors for the Immunotherapy of Hepatocellular Carcinoma

This technology includes the utility of the novel small molecule inhibitors of ALDH1A1 (RALDH1) in combination with immunotherapy for the treatment of hepatocellular carcinoma (HCC). Recently it was shown that the ALDH1A1 catalyzed production of retinoic acid (RA) in tumor cells promotes their differentiation into immunosuppressive antigen-presenting cells. Therefore, blocking RA production by tumor cells and/or blocking RA signaling in monocytes using our ALDH1A1 inhibitors can alleviate immunosuppression and engender anti-tumor immune responses.

Treatment for Wolfram Syndrome and Other Endoplasmic Reticulum Stress Disorders with Endoplasmic Reticulum Calcium Modulators

This technology includes the use of JTV-519 and oxidized form of JTV-519, as a novel treatment for Wolfram syndrome and other diseases associated with endoplasmic reticulum (ER). JTV-519 can prevent the leakage of ER calcium to the cytosol and abnormal activation of a pro-apoptotic enzyme, calpain 2, in cell models of Wolfram syndrome. Further, these compounds can prevent cell death in beta cell models of these diseases.

New Allosteric Inhibitors of C-Abl Tyrosine Kinase for the Treatment of Alzheimer’s and other Neurodegenerative Diseases

This technology includes a variety of structures that can effectively target the c-Abl myristate binding pocket with increased potency and brain permeability. C-Abl is a ubiquitous non-receptor tyrosine kinase involved in signal transduction. In addition to its classic function in leukemia pathogenesis, c-Abl kinase is also thought to play a role in neuronal health, whereby deregulation of c-Abl could be related to early neuronal dysfunction and cytoskeletal alterations.