Mouse Monoclonal Antibodies to Human Tristetraprolin (TTP)

TTP has been implicated in autoimmune and inflammatory diseases through its role as a regulator of the transcripts encoding several pro-inflammatory cytokines, including tumor necrosis factor alpha. However, it has been difficult to study endogenous TTP in man and other animals because it is expressed at very low levels in most cells and tissues, and because of the lack of mouse monoclonal antibodies directed at the human protein.

Polyclonal Antibodies to the Kidney Protein Sodium-Hydrogen Exchanger 3 (NHE3)

Antibodies to NHE3, useful for immunoblotting and immunocytochemistry, are available to resell for research purposes. NHE3 is a membrane Na+/H+ exchanger involved in maintenance of fluid volume homeostasis in the kidney. It is expressed on the apical membrane of the renal proximal tubule and plays a major role in NaCl and HCO3 absorption. The inventor has developed rabbit polyclonal antibodies directed against a peptide sequence common to human, rat and mouse NHE3.

Polyclonal Antibodies to Thiazide-Sensitive Sodium-Chloride Cotransporter (NCC)

Antibodies to thiazide-sensitive sodium-chloride cotransporter (NCC), useful for immunoblotting and immunocytochemistry, are available to resell for research purposes. NCC is found on the apical membrane of the distal convoluted tubule, where it is the principal mediator of Na+ and CI- reabsorption in this segment of the nephron. NCC is the target of thiazide diuretics used in the treatment of hypertension. The inventors have developed rabbit polyclonal antibodies directed against a peptide sequence in the C-terminal region of NCC.

Polyclonal Antibodies to NKCC2, a Kidney-Specific Member of the Cation Chloride Co-transporter Family, SLC12A1

Antibodies to NKCC2, useful for immunoblotting and immunocytochemistry, are available to resell for research purposes. NKCC2 is found on the apical surface of the thick ascending limb of the loop of Henle, where it facilitates transport of sodium, potassium, and chloride ions from the lumen of the renal thick ascending limb into the cell. Transport of sodium dilutes the luminal fluid, decreasing its osmolality creating an osmotic driving force for water reabsorption in the connecting tubule and cortical collecting duct under the influence of the hormone vasopressin.

Polyclonal Antibodies to the Kidney Protein Urea Transporter 1 (UTA1)

Antibodies to UTA1, useful for immunoblotting and immunocytochemistry, are available to resell for research purposes. Urea Transporter 1 (UTA1) is activated by vasopressin and is responsible for urea transport across the apical membrane into the intracellular space within the renal inner medullary collecting duct. The inventor has developed rabbit polyclonal antibodies directed against a peptide sequence in human UTA1. Antibody also recognizes UTA3, another product of the same gene.

PTH2 and PTH1 Receptor Ligands

Parathyroid hormone receptors found on osteoblasts in bone and renal tubule cells in kidney elevate blood calcium levels when stimulated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Excessive secretion of PTH from the parathyroid gland results in primary hyperparathyroidism. Production of PTHrP by various tumors results in humoral hypercalcemia of malignancy. In both of these conditions, excessive blood calcium levels lead to clinically significant morbidity. A parathyroid hormone antagonist could therefore have therapeutic value.

qPCR Assay for Detection of JC Virus

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. For example, more than five percent (5%) of AIDS patients develop PML. Additionally, these conditions include, but are not limited to, cancers such as leukemias and lymphomas, organ transplants such as kidney, heart and autoimmune conditions with treatment that modulates the immune system such as Multiple Sclerosis (MS), rheumatoid arthritis, psoriasis, and systemic lupus erythematosus.

Therapeutic Peptide Treatment for Dyslipidemic and Vascular Disorders

This invention is directed to use of certain peptide analogs comprising multiple amphipathic helical domains that are able to promote cellular lipid efflux and stimulate lipoprotein lipase activity. As a result, administration of invention peptides lead to reduced incidences of hypertriglyceridemia without inducing toxicity. Existing peptides that stimulate efflux of lipids from cells exhibit unacceptably high toxicity. Invention peptides are superior to existing peptides and can also be used to treat or prevent a vast range of vascular diseases, and their dyslipidemic precursors.

RORgamma (RORC) Deficient Mice Which Are Useful for the Study of Lymph Node Organogenesis and Immune Responses

The retinoid-related orphan receptor gamma (RORgamma) is a member of the nuclear receptor superfamily. NIH investigators used homologous recombination in embryonic stem cells to generate mice in which the RORgamma gene was disrupted. RORgamma deficient mice lack peripheral and mesenteric lymph nodes and Peyer's patches indicating that ROR expression is indispensable for lymph node organogenesis. In addition, RORgamma is required for the generation of Th17 cells which play a critical role in autoimmune disease.

Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.