Transgenic Mouse Model of Human Basal Triple Negative Breast Cancer

The NCI Laboratory of Cancer Biology and Genetics seeks parties interested in collaborative research to further develop this mouse model of triple-negative breast cancer (TNBC) to study cancer biology and for preclinical testing.  As a Research Tool, patent protection is not being pursued for this technology; more information to access this strain can be found here: https://www.jax.org/strain/030386.

Zirconium-89 PET Imaging Agent for Cancer

Researchers at the NCI Radiation Oncology Branch  and NIH CIT Center for Molecular Modeling developed a tetrahydroxamate chelation technology that provides a more-stable Zr-89 complex as an immuno-PET cancer imaging agent. In either the linear or the macrocyclic form, the tetrahydroxamate complexes exhibit greater stability as chelating agents compared to Zr-89 complexed to the siderophore desferrioxamine B (DFB), a trihydroxamate, which represent

Brain endothelial reporter cells

Aberrant function of the WNT-b-catenin pathway is a common underlying cause of tumorigenesis.  Despite the attractiveness of the WNT-b-catenin pathway as a therapeutic target, WNT dependent cell signaling is also crucial for normal tissue development, and is ubiquitous in all organs.  As a result, WNT-b-catenin pathway inhibitors cause many side effects and fail to meet FDA safety standards.  A more targeted approach is needed to develop safe and effective WNT signaling inhibitors.

Improved Production of Prenylated Protein in Insect Cells

KRAS and other Ras-family enzymes are an important component of over 30% of human cancers, however, no effective therapeutics targeting Ras or Ras-driven cancers are currently available.  The production of Ras proteins in vitro is required for the identification and characterization of Ras targeting drugs.  An important step in producing the Ras protein involves prenylation of the C-terminus of the protein via farnesyltransferase, a modification that does not occur in prokaryotic organisms.  Previous attempts to generate properly processed Ras in eukaryotic cells has

Target for Anti-Tumor Immune Responses

The Surgery Branch of the National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to carry out genotypic as well as phenotypic analysis of the 888 mel cell line in order to better understand the nature of tumor cells that respond to therapy. In addition, this cell line can be used as a target of humoral or cell mediated immune responses as a part of studies characterizing the nature of immune responses directed against tumor cells. 

Mouse Model for the Preclinical Study of Metastatic Disease

The successful development of new cancer therapeutics requires reliable preclinical data that are obtained from mouse models for cancer. Human tumor xenografts, which require transplantation of human tumor cells into an immune compromised mouse, represent the current standard mouse model for cancer. Since the immune system plays an important role in tumor growth, progression and metastasis, the current standard mouse model is not ideal for accurate prediction of therapeutic effectiveness in patients.