Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Prematurely-Graying Mouse Line Demonstrates Regulation of Melanocyte Stem Cell Development by SOX10 (Sry-Related HMG-Box) Transcription Factor for Use in Regenerative Medicine

This technology includes transgenic mice to be used in the study of melanocyte stem cells (MSCs) for utilization in regenerative medicine. Using the melanocyte system as a model, we investigated establishment of MSCs in the hair bulge - the stem cell compartment of the hair. During embryogenesis, all melanoblasts express SOX10, but this expression is downregulated during hair follicle morphogenesis and MSC differentiation. To further study the role of SOX10, we generated transgenic mice overexpressing SOX10 in melanoblasts.

A Diagnostic Kit for Assessing Exposure or Infection by the Koala Family of Retroviruses

This invention relates to a diagnostic kit for assessing exposure to or infection by a koala retrovirus. The kit consists of specific primers and probes for the detection of three distinct subtypes of infectious koala retrovirus and may be useful in various species, including humans, primates, and koalas.

Retroviral Vector Packaging Cell Lines and Purification Methods for Gene Therapy

This invention relates to a novel gammaretroviral vector packaging cell line and a method of producing gammaretroviral vectors suitable for gene therapy. The described vectors may contain the gibbon ape leukemia virus (GALV) envelope with a CD11D8 epitope tag enabling their purification on a monoclonal antibody conjugated column. These vectors have several advantages over existing systems, including a broader host range, higher infectivity, and lower potential for replication.

Generation of mutant mouse alleles that functionally disrupt production of BDNF from its ndividual promoters

This technology relates to a mouse model that improves an existing method of disrupting the production of the BDNF protein in specific parts of the brain. A current avenue of research seeks to examine how gene expression may effect long-lasting changes in the nervous system. Previous work has resulted in a mouse line in which the production of BDNF was disrupted. However, these mice had an inadvertent genetic component left in: a neomycin cassette. This unintentional addition led to significant deleterious effects.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Stopping Neurogenesis in Transgenic Mice and Rat Models that Express the HSV-thymidine kinase Gene in Neuronal Precursor Cells

This invention relates to novel mouse and rat models that permit the temporal death of neuronal precursor cells at any time point. Other existing methods of decreasing neurogenesis are relatively non-specific (e.g., injecting glucocorticoids) or require expensive equipment (e.g., focal x-irradiation)
These mice and rats are being used to inhibit adult neurogenesis in order to study the normal function of adult neurogenesis and to model disease states thought to feature decreased neurogenesis, such as chronic stress, anxiety, and depression.

Diagnosis and Treatment of Pediatric Acute Neurologic Syndrome with Antineuronal Antibodies

The invention is a panel of five tests of patient sera for immune responses that may attack the brain and lead to the characteristic symptoms of pediatric acute neurologic syndrome (PANS). PANS is a condition defined by a sudden onset of obsessive-compulsive symptoms, eating restrictions, and other cognitive and/or behavioral symptoms. Currently, the diagnosis of PANS is made when other possible symptoms are ruled out, a diagnosis of exclusion.

Detecting Levels of Chymotrypsin and Amylase using Rabbit Polyclonal Antibodies Generated from Purified Human Enzymes

The invention relates to rabbit antisera raised against purified human chymotrypsin and amylase. Both chymotrypsin and amylase are produced by the pancreas and play important roles in digestion. Abnormal levels of chymotrypsin and amylase have been known to occur with multiple pancreas-related disorders, including pancreatitis. Measuring levels of these two enzymes using these polyclonal antibodies can help determine if a pancreas is functioning correctly.

Novel NMDA ligands that are specific and selective to the NR2B subunits based on the derivatives of 7-methoxy-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol

This invention includes the design and synthesis of ligands that bind selectively and specifically to the NR2B subunit of the NMDA receptor. The NMDA receptor is thought to play a role in the pathophysiology of psychiatric disorders, including depression, stroke, drug addiction, and neuropathic pain. Existing ligands to the NMDA receptor are widely used to treat these conditions.