Monoclonal Antibodies That Bind to the Underside of Influenza Viral Neuraminidase
Current influenza vaccines mainly induce antibodies against the surface glycoprotein hemagglutinin (HA) that block viral attachment to its host receptors and viral membrane fusion to the host cell. The immunodominant head region of HA undergoes antigenic drift and antibodies directed to the head confer little cross-protections between strains or subtypes.
Programmable and Modular Nucleic Acid Nanoassemblies-based (NAN) Platforms to Regulate Mechanosensitive Activation of T-cells
This technology includes mechanobiological nucleic acid nanoassemblies-based platforms with dynamically controlled efficiency of T-cell activation. T-cells are the central players in adaptive immune response led by a T-cell receptor (TCR) centric machinery. Current T-cell activation strategy (e.g., micron-scale beads) focuses on 2D TCR-agonist biomimetic surfaces and biomimetic 2D immune synapses with planar traction, which requires non-physiological hyper-stimulatory cytokines levels (e.g., IL-2), and thus, is incompatible with clinical applications.
Removal of Selected Proteins Using Light Energy: Photoimmunotherapy
Researchers at the NCI Laboratory of Molecular Theranostics and the Molecular Imaging Program have developed a new method to modify, isolate and remove a single chemically-labeled molecule or a cluster of proteins associated with the chemically-labeled protein. The chemical label can be an antigen-antibody complex. This discovery is based on the mechanism of photo-immunotherapy (PIT).
89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods
This technology from the NCI Molecular Imaging Program relates to a Zirconium-89 (89Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography/computed tomography (PET/CT) imaging, and associated methods. A long half-life of 89Zr (78.4 hours), high sensitivity of PET, and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity without causing cellular toxicity.
Monoclonal Antibodies to Fentanyl Analogs for Research, Therapeutics, and Novel Diagnostics
Fentanyl is a synthetic opioid drug approved by the Food and Drug Administration for use as an analgesic (pain relief) and anesthetic. However, synthetic opioids, such as fentanyl, are prone to abuse and are the primary drivers of overdose related deaths in the United States. As little as two milligrams of fentanyl can be lethal. Furthermore, structural variants of fentanyl, often mixed with other drugs or counterfeit pills are illegally distributed without the user’s knowledge.