Stem Cell Factor-responsive FcepsilonRI Bearing Human Mast Cell Line LAD2

A human mast cell line LAD2 that more closely resembles normal in vivo and in vitro human mast cells by expressing functional FcepsilonRI receptors and responding to stem cell factor (SCF) with proliferation, as described in Leuk Res. 2003 Aug;27(8):677-82 and developed by the laboratory of Dr. Dean Metcalfe at the National Institute of Allergy and Infectious Diseases.  This cell line also releases mediators by cross-linking FcgammaRI (CD64) receptors and express FcgammaRII (CD32).

Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1, 2, 3, and 4

The invention relates to a dengue virus tetravalent vaccine containing a common 30-nucleotide deletion (delta30) in the 3'-untranslated region (UTR) of the genome of dengue virus serotypes 1, 2, 3, and 4. The previously identified delta30 attenuating mutation, created in dengue virus type 4 (DEN4) by the removal of 30 nucleotides from the 3'-UTR, is also capable of attenuating a wild-type strain of dengue virus type 1 (DEN1).

Mouse Monoclonal Antibodies Against Human IKKgamma/NEMO Protein

NF-kB has been found to be important in immune responses, cell proliferation, apoptosis, and in organ development. Several years ago it was discovered that an IKKgamma/NEMO protein was essential as an adaptor molecule to mediate TNF-alpha, IL-1, and oncoprotein induced activation of NF-kB. Mutation in IKKgamma/NEMO also results in two human genetic diseases, Familial incontinentia pigmenti and hypohidrotic/anhidrotic ectodermal dysplasia. The NIH announces mouse monoclonal antibodies to IKKgamma/NEMO that are far superior to other immunological reagents.

Phenylthiocarbamide (PTC) Taste Receptor

Bitter taste has evolved in mammals as a central warning signal against ingestion of poisonous or toxic compounds. However, many beneficial compounds are also bitter and taste masking of bitter tasting pharmaceutical compounds is a billion dollar industry. The diversity of compounds that elicit bitter-taste sensations is vast and more than two dozen members of the TAS2R bitter taste receptor gene family have been identified.

Construction of Recombinant Baculoviruses Carrying the Gene Encoding the Major Capsid Protein, VP1, From Calicivirus Strains (Including Norovirus Strains Toronto, Hawaii, Desert Shield, Snow Mountain, and MD145-12)

The noroviruses (known as "Norwalk-like viruses") are associated with an estimated 23,000,000 cases of acute gastroenteritis in the United States each year. Norovirus illness often occurs in outbreaks, affecting large numbers of individuals, illustrated recently by well-publicized reports of gastroenteritis outbreaks on several recreational cruise ships and in settings such as hospitals and schools. Norovirus disease is clearly important in terms of medical costs and missed workdays, and accumulating data support its emerging recognition as important agents of diarrhea-related morbidity.

Haplotypes of Human Bitter Taste Receptor Genes

Bitter taste has evolved in mammals as a crucial, important warning signal against ingestion of poisonous or toxic compounds. However, many beneficial compounds are also bitter, and taste masking of bitter tasting pharmaceutical compounds is a billion dollar industry. The diversity of compounds that elicit bitter-taste sensations is very large and more than two dozen members of the T2R bitter taste receptor family have been identified. Individuals are now known to be genetically predisposed to respond or not to respond to the bitter taste of a number of substances.

Method of Detecting Circulating Cell-Free HPV 6 and 11 DNA in Patients Afflicted With Diseases Caused by Chronic HPV 6 or 11 Infection and Use Thereof

Summary:

The National Cancer Institute (NCI) and Frederick National Laboratory for Cancer Research (FNLCR) seek research co-development partners and/or licensees for commercial development of a novel liquid biopsy diagnostic for non-invasive detection of cell-free HPV 6 and 11 DNA for recurrent respiratory papillomatosis (RRP).

NIH Wins Licensing Executive Society Deals of Distinction Award for WHO C-TAP Partnership

The NIH Technology Transfer Program has won the Licensing Executive Society’s Deals of Distinction award for 2022. The Deals of Distinction Award is given to an outstanding licensing deal from the past year. Steve Ferguson, Special Advisor at the NIH Office of Technology Transfer, recently attended the LES award ceremony to accept the award on NIH’s behalf. Continue reading to learn about this award-winning license agreement from Steve himself.

COVID-19 Technologies Licensed Globally Through WHO Program Win LES Deals of Distinction Award

NIAID TTIPO’s extraordinary efforts in “COVID-19 Technologies Licensed Globally Through WHO Program” was recognized by the Licensing Executives Society (U.S.A. & Canada) in 2022 with a Deals of Distinction Award in the Industry-University-Government Interface Sector. This award acknowledged the collaborative efforts put forth by the WHO, Medicines Patent Pool (MPP) and the NIH for COVID-19 technologies licensed globally through the WHO program.

CDC’s Assay for Global Surveillance of Drug-resistant HIV-1 Was Commercialized

Researchers at the Centers for Disease Control and Prevention (CDC) developed a low-cost technology to rapidly detect HIV-1 drug resistance (HIVDR) in plasma and dried blood spot (DBS) samples with 95.8% genotyping sensitivity. CDC’s partners at Life Technologies Corporation (“LifeTech”) have licensed, further developed, and incorporated the technology into a commercialized product. Life Tech’s HIV-1 Genotyping Kit provides a cost-effective assay, scalable workflow, easy-to read sequencing results, and robust test performance.