Improved Live-Attenuated Vaccine for Respiratory Syncytial Virus (RSV) Bearing Codon-Pair Deoptimized NS1, NS2, N, P, M and SH Genes and Additional Point Mutations in the P Gene

RSV is the most important viral agent of severe respiratory disease in infants and young children worldwide and also causes substantial morbidity and mortality in older adults. RSV is estimated to cause more than 33 million lower respiratory tract illnesses, three million hospitalizations, and nearly 200,000 childhood deaths worldwide annually, with many deaths occurring in developing countries. However, despite the prevalence of RSV and the dangers associated with infection, no RSV vaccine has been successfully developed to date.

Mononegavirales Vectors Expressing Chimeric Antigens

Human respiratory syncytial virus (RSV) continues to be the leading viral cause of severe acute lower respiratory tract disease in infants and children worldwide, and also is an important cause of morbidity and mortality in the elderly. A licensed vaccine or antiviral drug suitable for routine use remains unavailable. This invention relates to the use of murine pneumonia virus (MPV—previously known as pneumonia virus of mice, PVM—of family Pneumovirida e) as a vaccine vector expressing the RSV fusion protein F, the most important protective antigen of RSV.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.

Staphylococcus Epidermidis Isolates from Human Skin Samples for Use as Clinical Molecular Markers

This technology includes a catalog of commensal and pathogenic staphylococci from human skin for utilization as clinical molecular markers of skin conditions and infections. The study of microbial diversity of human skin in both healthy and disease states is important to develop tools to track infections, outbreaks, and multi-drug resistant organisms, particularly in atopic dermatitis, eczema and other microbial-associated infections. Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates.

DNA Methylation Based Non-invasive Blood Diagnostic Assay for Precision Cancer Detection and Classification

This technology includes a panel of 46 genomic loci of DNA methylation (represented by CpG dinucleotides on different chromosomes) with application in blood-based cancer screening. The markers robustly distinguish tumor from normal samples using 8 loci and classify 13 different tumor types. Using 39 loci, inventors were able to discriminate between individual tumor types or peripheral blood. In 4052 tumor samples from 13 tumor types, the true positive rate of classification was 91.4%.

Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging

This technology includes a technique to improves detection of myocardial scar compared with conventional bright-blood late gadolinium enhancement (LGE) techniques. Dark-blood late gadolinium enhancement (DB-LGE) improves tissue delineation with signal suppression of the blood pool based on T2-preparation pulse that is relatively independent from the blood flow velocities and improves scar detection in patients with known or suspected coronary artery disease.

Human Monoclonal Antibodies That Recognize Influenza A Viruses for Vaccine, Therapeutic, and Diagnostic Development

Human influenza A is one of two influenza virus types that cause seasonal epidemics of disease (known as flu season) almost every winter in the United States. Influenza A viruses are the only influenza viruses known to cause flu pandemics (i.e., global epidemics of flu disease). (Source.)

Hybridomas Producing Antibodies to Neuraminidase for Influenza A (H3N2) Diagnostics, Vaccine, and Therapeutic Development

Influenza A and B viruses can cause seasonal flu epidemics ― commonly known as the “flu season” ― and infect the nose, throat, eyes, and lungs in humans. Typically, flu seasons that are dominated by influenza A (H3N2) virus activity have higher associated hospitalizations and deaths in at-risk groups, such as people ages 65 and older and young children. Influenza A (H3N2) virus can also cause respiratory disease in animals, such as canines and swine.