Selective A3 Adenosine Receptor Agonists for the Treatment of Chronic Neuropathic Pain and Other Conditions

This technology includes the creation and use of A3 adenosine receptor (A3AR)-selective agonists for treating chemotherapy-induced peripheral neuropathy, chronic neuropathic pain, rheumatoid arthritis, psoriasis, and other conditions. A3 receptors for adenosine are found in most cells and endogenous activation of the A3 receptors can result in apoptosis, thereby relieving the inflammation or targeting a tumor. A3AR agonists have been a promising strategy for the treatment of various diseases.

Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease

This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.

Sidechain Functionalized S-Acylbenzamides With Anti-HIV Activity

HIV infection remains a major medical problem, with approximately 38 million people worldwide living with HIV. Nipamovir and SAMT-247 are simple and inexpensive small molecules that inactivate HIV virus by interference with final maturation steps of the virus. This mechanism provides a high barrier for HIV to develop resistance. In fact, lab experiments designed to encourage HIV to develop resistance to Nipamovir and SAMT-247 have all failed. In animal tests, Nipamovir and SAMT-247 do not display toxic side effects.