Sphingosine-1-phosphate 1 (S1P1) Receptor Signaling Mouse for Therapeutic Development

This technology includes a mouse model for studying SiP1 receptor signaling for development of therapeutics for a variety of conditions. The S1P1 receptor locus of the mouse has been modified by gene targeting to encode a fusion of the S1P1 receptor and the tetracycline-controlled activator protein (tTA) connected by a Tobacco Etch Virus (TEV) cleavage sequence, internal ribosome initiation sequence (IRES), followed by a beta-arrestin-Tobacco Etch Virus (TEV) protease fusion protein. When activated, the modified S1P1 receptor binds the beta-arrestin-TEV protease fusion, which cleaves the tTA.

Truncated (N)-Methanocarba Nucleosides as Al Adenosine Receptor Agonists and Partial Agonists: Receptor Docking and Potent Anticonvulsant Activity for the Treatment of Various Conditions

This technology includes A1AR-selective agonists which are full or partial agonists of the A1AR and are being considered for treatment of various conditions: seizures, stroke, diabetes, pain, cardio-protection and arrhythmias. A1AR agonists are highly neuroprotective in ischemic and epileptic models. A1AR agonists are also being explored for antidepressant, antianxiety, and other neuropsychiatric effects, due to their presynaptic action to decrease the release of excitatory amino acids in the brain.

A Cell Line Secreting an IgG Monoclonal Antibody to Mouse ZP2 for the Study of Anti-Psychotic Therapies

This technology includes a cell line to be used for the study of anti-psychotic therapies and potentially Parkinson’s disease. Activation of D1 dopamine receptors plays a critical role in many fundamental CNS processes. M4 mAChRs are coexpressed with D1 dopamine receptors in a specific subset of striatal medium spiny neurons that contain GABA as the major neurotransmitter. The present study used Cre/LoxP technology to generate mutant mice that lack M4-¬-AChRs only in D1 dopamine receptor-¬-expressing cells to investigate the physiological relevance of mAChRs in this neuronal subpopulation.

Phenotypic Screening for Treating Chronic Neuropathic Pain: Focus on 2-Arylethynyl Substitution of A3 Adenosine Agonists

This technology includes (N)-methanocarba derivatives that are selective agonists of the A3 receptor to be used for the treatment of chronic neuropathic pain. This class of compounds produced full agonists of the human A3AR of nanomolar affinity that were consistently highly selective (>1000-fold vs. A1AR and A2AAR). The selectivity at mouse A3 receptors is smaller, but the compounds are still effective in vivo in reducing or preventing development of neuropathic pain.

Eukaryotic Transposase Mutants and Transposon End Compositions for Modifying Nucleic Acids and Methods for Production and Use in the Generation of Sequencing Libraries

This technology includes novel hyperactive Hermes Transposase mutants and their encoding genes. These transposases are easily purified in large quantity after expression in bacteria. The modified Hermes Transposases are soluble and stable and exist as smaller active complexes compared to the native enzyme. The consensus target DNA recognition sequence is the same as the native enzyme and shows minimal insertional sequence bias.

MiR-193b and MiR-365-1 are Not Required for the Development and Function of Brown Fat in the Mouse

This technology includes the discovery that two specific microRNAs are not required for the development and function of brown fat in mice. Effects of inactivating microRNAs in cell culture in vitro have not always been reproduced in vivo. The paper tests the effect of inactivating two microRNAs, miR-193b and miR-365-1 on the differentiation, function and development of brown adipose tissue. In contrast to positive results previously observed in vitro, the mouse in vivo studies failed to demonstrate significant effects.

Figla-Cre Transgenic Mice Expressing Myristoylated EGFP in Germ Cells as a Model for Investigating Perinatal Oocyte Dynamics

This technology includes a transgenic mouse model which can be used to study perinatal oocyte dynamics. In the first two days after birth, the number of primordial ovarian follicles and their germ cells undergo a major decrease. The mechanism for this decrease was studied. Ablation of FIGLA (Factor in the germline, alpha), a basic helix-loop-transcription factor, results in massive perinatal oocyte loss. A transgenic mouse line was established, Figla-EGFP /Cre, in which EGFP and Cre recombinase are expressed just before birth in germ cells.

Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Adenosine Kinase for the Prevention of Seizures

This technology includes new nucleoside inhibitors containing rigid rings that provide high potency for use as antiepileptic drugs. Adenosine kinase (AdK) inhibitors raise the level of endogenous adenosine, particularly in disease states, and are of interest for the potential treatment of seizures and neurodegenerative and inflammatory conditions.

Clinical Model for Predicting Kidney Failure

This technology includes a model for providing a patient-specific diagnosis of disease using clinical data. Specifically, the present invention relates to a fully unsupervised, machine-learned, cross-validated, and dynamic Bayesian Belief Network model that utilizes clinical parameters for determining a patient-specific probability of transplant glomerulopathy. Kidney failure is a growing problem worldwide, in part related to the increase incidence of diabetes and hypertension. Renal replacement therapy includes dialysis or renal transplantation.