Synthetic Biotin-streptavidin Replacement for Use in the Development of Clinical Diagnostics

This technology includes an alternative synthetic biotin-streptavidin replacement system for use in the development of clinical diagnostics. Peptide nucleic acids (PNA) when functionalized onto the surface of microspheres are capable of targeting short RNA targets from solutions. However, when the target nucleic acid becomes longer and complicated in structure, the PNA no longer efficiently binds due to steric hindrance from the microspheres and/or slow hybridization kinetics of larger nucleic acid targets.

Structure-Based Design of A3 Adenosine Receptor-Selective 2-Arylethynyl (N)-methanocarba Nucleosides for Diagnostic and Therapeutic Uses

This technology includes compounds that are selective agonists of the A3 receptor for the treatment of various disorders such as cancer and autoinflammatory diseases. Structurally, these compounds extend the class of (N)-methanocarba derivatives that are selective agonists of the A3 receptor.

HEK293 Cell Line Deficient in Functional CASP8AP2 for Improved Production Efficiency

This technology includes an engineered HEK293 cell line expressing firefly luciferase by functionally knocking out the caspase 8 associated protein 2 (CASP8AP2) gene using CRIPSR/Cas9 genome editing for improved production efficiency. This engineered cell line possesses superior recombinant protein expression capabilities than the parental cell line from which it was created, while proliferating and metabolizing carbon at a comparable rate. Improved recombinant protein expression is mediated by growth arrest at the G0/G1 phase.

Ribose Derivatives as A3 Adenosine Receptor Modulator for Various Therapeutic Uses

This technology includes a class of A3AR-selective agonists to be used therapeutically to treat a variety of conditions, including chronic pain, cancer, and inflammatory diseases. This class of compounds produced full agonists of the human A3AR of nanomolar affinity that were consistently highly selective (>1000-fold vs. A1AR and A2AAR). The selectivity at mouse A3 receptors is smaller, but the compounds are still effective in vivo in reducing or preventing development of neuropathic pain.

Antibacterial and Antifungal Polyketides from Environmental Amycolatopsis Strains

This technology includes three new chemical entities discovered for antibacterial and antifungal activities. The compounds are novel tetramic acid containing polyketides obtained from two different Amycolatopsis strains. Their planar structures and relative stereochemistry were elucidated by 1D and 2D NMR methods, including 1H-1H and 13C-13C COSY, TOCSY, HSQC, HMBC and ROESY. Whole genome sequencing of these two strains revealed a 158 kb biosynthetic gene cluster (BGC) containing a 23-module, mixed NRPS-PKS pathway responsible for their biosynthesis.

Sphingosine Kinase 1 (Sphk1) Knockout Mouse for Utilization in Developmental Biology

This technology includes a sphingosine kinase 1 (Sphk1) knockout mouse model for use in developmental biology research. Sphingosine-1-phosphate (S1P) is synthesized from sphingosine and ATP by the action of sphingosine kinase, and activates cell signaling. Two sphingosine kinases, SPHK1 and SPHK2, have been identified. To study the physiological function of SPHK1, Sphki null mice were generated. The mice were viable, fertile, with no obvious abnormalities. Total SPHK activity in most tissues was substantially reduced, suggesting the presence of other sphingosine kinases.

(N)-methanocarba Phosphonate Analogues of 5'-AMP as Cardioprotective Agents

This technology includes the use of the (N)-methanocarba phosphonate analogues of 5’-AMP as cardioprotective agents for use in conditions such as cardiomyopathy and heart failure. We previously found a compound, MRS2339 (a phosphate derivative that can be slowly cleaved in vivo and lose potency), which activates the appropriate receptors and is protective in models of heart failure in several species (mouse, dog). MRS2339 is a phosphate derivative that can be slowly cleaved in vivo and lose potency. We now extend this technology to more stable derivatives, i.e.

A Novel Oxygen-induced Expression Vector for Production of Recombinant Proteins in Escherichia Coli

This technology includes a new method to induce recombinant protein expression in E. coli through the activating the SoxS promoter by molecular oxygen. We previously discovered that the SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration mainly to protect the bacteria from possible oxygen damage. We hypothesized that the 16-fold increase in the expression of this regulon make it possible candidate for inducing the expression of recombinant proteins.

Mouse Models for the Study of Gaucher Disease and Therapeutic Development

This technology includes mouse models for both mild and severe Gaucher disease. Gba-L444P and Gba-L444P A456P mice, respectively, carry common gene mutations for milder or severe Gaucher disease, a lysosomal storage disease. Gaucher Disease is caused by mutations in the lysosomal enzyme, glucocerebrosidase. Deficiency of enzyme activity leads to the accumulation of glucosylceramide in liver, spleen, bone, and in the most severe cases, the central nervous system.