Diagnostic Biomarker of Metastasis for Improved Clinical Management of Head and Neck Cancer

Squamous Cell Carcinoma of the Head and Neck (HNSCC) is associated with poor prognosis due to the advanced stage of disease (metastasis) typically found at the time of diagnosis. Investigators at the NIH have developed a sensitive method using a protein biomarker for detecting even just a few HNSCC tumor cells in lymph nodes with occult disease.

Rescue of AAV Production by shRNA Co-transfection

Recombinant adeno-associated virus (rAAV) vectors are proving to be a valid, safe and efficient gene transfer system for clinical applications. As most vectors utilize constitutive promoters, this results in transgene expression in the producer cell. Some of these transgene products can induce proapoptotic, cytostatic or other unknown effects that interfere with producer cell function. Therefore, this reduces the viral vector yield and is a major limitation when trying to characterize poorly described genes.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Antigen Mixtures for Serological Detection of HHV-8 Infection

This invention describes a highly specific and sensitive serological test for human herpesvirus 8 (HHV-8) infection that uses the Luciferase Immunoprecipitation System (LIPS). A mixture of four virus-specific antigens, including K8.1, v-cyclin, ORF65 and LANA, was shown to provide more robust detection of HHV-8 infection than traditional methods due its ability to detect very low viral loads.

Simple, Quantitative Sensitive High-throughput Antibody Detection for Lyme Disease

This technology is for compositions and methods for diagnosis of Lyme disease. Currently, Lyme disease is diagnosed by clinical exam and a history of exposure to endemic regions. Although, laboratory tests may aid diagnosis, the best tests currently available are slow and labor intensive and require understanding of the test, and infection stage. A two-step antibody based test process is currently the recommended laboratory test. The first step is either an enzyme immunoassay (EIA), or an indirect immunofluorescence assay (IFA).

Development of Immune System Tolerance for the Treatment of Autoimmune Disease

The present invention provides a therapeutic method for the treatment of autoimmune or autoinflammatory diseases by first breaking down the dysregulated immune system and then reprogramming the immune system to restore tolerance to the patient's self-antigens by induction of antigen specific regulatory T cells. The inventors have shown that only with the combination of apoptosis, phagocytes, and antigen can antigen-specific regulatory T cells (Treg) cells be optimally generated to develop long-term immune tolerance.