Blocking CD38 using Daratumumab F(ab)2 to Protect Natural Killer Cells from Daratumumab-induced Apoptosis and Cell Death for the Treatment of Multiple Myeloma

This technology includes the method of blocking CD38 in expanded natural killer (NK) cell therapy in combination with daratumumab in patients with multiple myeloma. Our in vitro studies have already confirmed the addition of NK cells to myeloma cells that have been exposed to daratumumab enhances myeloma killing compared to single agent treatment.

Fluorogen-binding RNA Aptamers for Imaging and Analysis of RNA

This technology includes a number of RNAs that can induce strong fluorescence of otherwise non-fluorescent small molecules to be used for imaging and analysis of RNA. These RNAs have many potential applications as tags for live-cell imaging of cellular RNAs, as well as reporters for in vitro diagnostics. The "Mango" family of fluorescent RNA-fluorophore complexes has been previously reported.

Single cell profiling of chromatin Occupancy and RNAs Sequencing (scPCOR-seq)

Cell-to-cell heterogeneity in gene expression is a widespread phenomenon, and may play important roles in cellular differentiation, function and disease development. Human Cell Atlas aims to profile gene expression in every single human cells. Recent studies have implicated a potential role of chromatin in the heterogeneity in gene expression. Understanding the mechanisms of cellular heterogeneity requires simultaneous measurement of RNA and occupancy of histone modifications and transcription factors on chromatin due to their critical roles in transcriptional regulation.

Modulating Autophagy as a Treatment for Lysosomal Storage Diseases

Researchers at NIAMS have developed a technology for treatment of lysosomal storage diseases by inhibition of autophagy. Pompe disease is an example of a genetic lysosomal storage disease caused by a reduction or absence of acid alpha-glucosidase (GAA). Patients with Pompe disease have a lysosomal buildup of glycogen in cardiac and skeletal muscle cells and severe cardiomyopathy and skeletal muscle myopathy. Treatment of Pompe disease by GAA enzyme replacement therapy is quite ineffective for the skeletal muscle myopathy.

Identification of a Novel Parvovirus for Vaccine Development and Use as a Diagnostic Tool

This technology includes a procedure for novel virus identification in a variety of human specimens by solexa high-throughput sequencing, which allows for the screening a large number of clinical specimens for novel virus discovery in a highly efficient and relatively economical method. By using this technique, we have successfully identified a novel parvovirus from samples of seronegative hepatitis patients.

Generation of AAVS1 and C13 “Safe Harbor” Transcription Activator-life Effector Nucleases (TALENs) for Drug Screening or Gene Therapy Development

This technology includes AAVS1 and C13 “safe harbor” transcription activator-life effector nucleases (TALENs) for drug screening or gene therapy applications. TALENs are engineered sequence-specific DNA endonucleases that can significantly enhance genome-editing efficiency by >100-1000 folds. “Safe harbor” such as AAVS1 safe harbor and C13 safe harbor is genome locus that allows robust and persistent transgene expression with no or minimal interference of endogenous gene expression and cell properties.

Anti-sense Therapy Against ApoC-III as a Treatment for High Cholesterol

This technology includes a new class of synthetic peptides that activate Lipoprotein Lipase (LPL), a key plasma enzyme that lowers triglycerides, by displacing apoC-111, a potent inhibitor of LPL. ApoC-11 is a known activator of LPL, whereas ApoC-111 inhibits LPL and raises triglycerides either directly by blocking lipolysis and or by preventing hepatic uptake of lipoproteins. Both apoC-II and apoC-III have to bind to the surface of a lipoprotein particle to mediate their effects.

Novel ApoC-11 Mimetic Peptides That Activate LPL for the Treatment of ApoC-11 Deficiency and Hypertriglyceridemia

This technology includes a new class of synthetic peptides that activate Lipoprotein Lipase (LPL), a key plasma enzyme that lowers triglycerides. Mutations in apoC-II is a genetic cause of severe hypertriglyceridemia, which can lead to cardiovascular disease and pancreatitis.

Infectious Clone of Human Parvovirus B19 and Methods of Use

This technology described in this patent application relates the first reported infectious human parvovirus B19 clone, methods of cloning the parvovirus B19 genome as well as other viral genomes that have secondary DNA structures that are unstable in bacterial cells. The infectious clone and methods of producing the same would be useful in producing infectious virus, which can in turn be used, among other things, to identify and develop therapeutic agents for treatment and/or prevention of human parvovirus B19 infections. The infectious parvovirus B19 clone is also available for licensing.