Background-free Imaging by Selective Modulation of Nanodiamond Fluorescence Using a Magnetic Field

This technology includes the use of nanodiamonds to achieve background-free imaging. We present several techniques to reduce or eliminate background florescence by exploiting properties of the fluorescent nanodiamonds. In particular, magnetic field modulation of the fluorescence intensity offers a simple, robust, and easily adaptable method to obtain background free imaging in a variety of imaging modalities, i.e., fluorescence microscopy and wide field fluorescence animal imaging.

Clonal Spodoptera Frugiperda Cell lines for Enhanced Expression

This technology includes Spodoptera frugiperda (Sf9) cells which were developed to produce recombinant adeno-associated virus. The cells maintain a copy of the vector genome and for production, require infection with a single baculovirus that expresses either structural and nonstructural proteins to produce rAAV, or the non-structural (Rep) proteins to produce ceDNA.

Prazoles as Potential Broad Spectrum Anti-viral Agents

The technology described involves the use of a compound called prazole as an anti-viral agent specifically targeting HIV-1. It was found that prazole binds to a protein called Tsg101, which is crucial for the virus's life cycle. This binding disrupts the normal interaction of Tsg101 with another protein, ubiquitin, thereby inhibiting the release of HIV-1 particles from infected cells. Additionally, the interference caused by prazole leads to the degradation of the viral protein Gag within host cells.

Electronic Fringe Scanning for the Improvement of Medical Imaging Technology

This technology includes an electronic method for fringe scanning in grating-based phase-contrast imaging, which enhances x-ray phase-contrast imaging. Traditional methods use high-density gratings and require fine grating fringes, finer than the detector's resolution, necessitating fringe scanning to obtain phase-contrast information. This process typically involves complex and precise movements of a grating for each image, challenging in applications like medical computed tomography that demand rapid gantry rotation and acquisition of numerous projection images in less than a second.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

Bivalent Tn5 Complex and its Application to Map Enhancer-Promoter Interactions for Use in Diagnostics

This technology includes a new reagent, termed bivalent Tn5 complex, and applied it to mapping genome-wide enhancer-promoter interactions to be utilized for disease diagnostics. Chromatin structure is critical for regulating transcription in normal development and disease states. In particular, the interaction between enhancers and promotes are essential for the temporospatial control of gene expression.

Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Mass Spectrometry Derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Real-time Monitoring of In Vivo Free Radical Scavengers Through Hyperpolarized [1-13C] N-acetyl Cysteine as a Diagnostic and Disease Monitoring Tool

This technology includes synthesized demonstrated [1-13C] NAC as a promising novel probe for hyperpolarized 13C MRI methodologies which could provide diagnostic, and evaluation of response to treatment in various cancers and neurological diseases. N-acetyl cysteine (NAC) is a widely used therapeutic and involved to stimulate glutathione synthesis. Glutathione elevates detoxification and works directly as a free radical scavenger. In vivo hyperpolarized NAC was broadly distributed throughout the body.

Genetic Manipulation of Natural Killer Cells to Express c-MPL Growth Factor Receptor as a Therapy for Cancer

This technology includes genetic manipulation of natural killer (NK) cells to express thrombopoietin receptor (c-MPL) growth factor receptor as strategy to augment NK cell proliferation and anti-tumor immunity. Many investigational adoptive immunotherapy regimens utilizing NK cells require the administration of IL-2 or IL-15 cytokines to support the survival and function of the cells in patients, however administration of these cytokines causes a number of serious dose-dependent toxicities.