Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Novel Small Molecule Agonists of the Relaxin Receptor as Potential Therapy for Heart Failure and Fibrosis

The present invention is directed to novel small molecule agonists of the mammalian relaxin family receptor 1 (RXFP1), including human RXFP1. Activation of RXFP1 induces: 1) vasodilation due to up-regulation of the endothelin system; 2) extracellular matrix remodeling; 3) moderation of inflammation by reducing levels of inflammatory cytokines; and 4) angiogenesis. Small molecule agonists of RXFP1 may be useful in treating acute heart failure (AHF), scleroderma, fibrosis, other conditions associated with the biology of relaxin, and in improving reproductive health and wound healing.

Derivatives of Docosahexaenoylethanolamide (DEA) for Neurogenesis

The invention pertains to derivatives of docosahexaenoylethanolamide (synaptamide or DEA) and their use in inducing neurogenesis, neurite growth, and/or synaptogenesis. As such, these DEA derivatives can be used as therapeutics for neurodegenerative diseases such as traumatic brain injury, spinal cord injury, peripheral nerve injury, stroke, multiple sclerosis, autism, Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis. The DEA derivatives of the invention have increased potency and hydrolysis resistance as compared to native DEA.

Mouse Model for Methylmalonic Acidemia, an Inherited Metabolic Disorder

Methylmalonic Acidemia (MMA) is a metabolic disorder affecting 1 in 25,000 to 48,000 individuals globally. MMA is characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. About 60% of MMA cases stem from mutations in the methylmalonyl CoA mutase (MUT) gene encoding a key enzyme required to break down amino acids and lipids. Previous efforts to develop mice with null mutations in MUT have been unsuccessful, as such mutations result in neonatal death.

Non-invasive Pan-Cancer Detection Method

One of four deaths in the United States is due to cancer despite an emphasis on prevention, early detection, and treatment that has lowered cancer death rates by 20% in the past two decades. Further improvements in survival rates are likely to come from improving the limits of detection sensitivity at earlier stages of cancer. New approaches that rely heavily on genomic information, however, may change future testing strategies.

Gene Therapy for Niemann-Pick Disease Type C

Investigators at the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) are seeking collaborators to further develop gene therapy to treat Niemann-Pick Disease Type C (NPC). NPC is a rare, autosomal recessive, neurodegenerative disease. Approximately 95% of patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking. Mutations of NPC1 cause intracellular accumulation of unesterified cholesterol in late endosomal/lysosomal structures and marked accumulation of glycosphingolipids, especially in neuronal tissue.

Novel Codon-Optimized Gene Therapeutic for Methylmalonic Acidemia

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.