Methods and Materials for Identifying Polymorphic Variants, Diagnosing Susceptibilities, and Treating Disease

This invention relates to materials and methods associated with polymorphic variants in two enzymes involved in folate-dependent and one-carbon metabolic pathways important in pregnancy-related complications and neural tube birth defects: MTHFD1 (5,10-methylenetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, 10-formyltetrahydrofolate synthase) and methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L). These enzymes are extremely important in the promotion of DNA synthesis, a process that is critical for normal placental and fetal development.

Device and Method for Direct Measurement of Isotopes of Expired Gases: Application in Research of Metabolism and Metabolic Disorders, and in Medical Screening and Diagnostics

The technology offered for licensing and for further development concerns a novel device for intervallic collection of expired gas from subjects and subsequent measurement of the isotopic content of such expired gases. The device is specifically designed for medical research and clinical applications, and in particular in the area of metabolic disorders. The device may facilitate the development and testing of new therapies for such disorders and may be used for medical screening and diagnostics of metabolic diseases.

Model Cell Lines With and Without AKT1 Mutations Derived from Proteus Syndrome Patients

The Proteus syndrome is a congenital disorder characterized by patchy overgrowth and hyperplasia (cell proliferation) of multiple tissues and organs, along with susceptibility to developing tumors. It is a rare disorder, with incidence of less than one case per million, caused by a somatic mutation. It is also a mosaic disorder, that is one in which cells of the same person have different genetic content from one another.

Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Mouse Model for Methylmalonic Acidemia, an Inherited Metabolic Disorder

Methylmalonic Acidemia (MMA) is a metabolic disorder affecting 1 in 25,000 to 48,000 individuals globally. MMA is characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. About 60% of MMA cases stem from mutations in the methylmalonyl CoA mutase (MUT) gene encoding a key enzyme required to break down amino acids and lipids. Previous efforts to develop mice with null mutations in MUT have been unsuccessful, as such mutations result in neonatal death.

Novel Codon-Optimized Gene Therapeutic for Methylmalonic Acidemia

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.

Gene Therapy for Niemann-Pick Disease Type C

Investigators at the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) are seeking collaborators to further develop gene therapy to treat Niemann-Pick Disease Type C (NPC). NPC is a rare, autosomal recessive, neurodegenerative disease. Approximately 95% of patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking. Mutations of NPC1 cause intracellular accumulation of unesterified cholesterol in late endosomal/lysosomal structures and marked accumulation of glycosphingolipids, especially in neuronal tissue.

Capsid-Free AAV Vectors for Gene Delivery and Their Use for Gene Therapy

The invention concerns novel capsid-free AAV vectors that can be used for gene delivery and gene therapy applications. The invention provides for a linear nucleic acid molecule comprising in this order: a first adeno-associated virus (AAV) inverted terminal repeat (ITR), a nucleotide sequence of interest, and a second AAV ITR, wherein said nucleic acid molecule is devoid of AAV capsid protein coding sequences. The said nucleic acid molecule can be applied to a host at repetition without eliciting an immune response.

Non-invasive Pan-Cancer Detection Method

One of four deaths in the United States is due to cancer despite an emphasis on prevention, early detection, and treatment that has lowered cancer death rates by 20% in the past two decades. Further improvements in survival rates are likely to come from improving the limits of detection sensitivity at earlier stages of cancer. New approaches that rely heavily on genomic information, however, may change future testing strategies.