Novel Peptide of <em>Streptococcus pneumoniae</em> Surface Adhesion A (PsaA) Protein Associated with Adherence and Uses Thereof – for Vaccine Candidate, Therapeutic and Diagnostic Development

Streptococcus pneumoniae (S. pneumonia), bacteria commonly referred to as pneumococcus, are a significant cause of disease resulting in 1.5 million deaths every year worldwide according to the World Health Organization. The major types of pneumococcal disease are pneumonia (lung infection), bacteremia (bloodstream infection), and meningitis (infection of the tissue covering of the brain and spinal cord). Less severe pneumococcal illnesses include ear and sinus infections.

The CDC 2009 Influenza A H1N1 (Flu) Pandemic Real-time RT-PCR Panel including Pandemic Influenza A and Pandemic H1 Assays

CDC researchers have developed probes and primers for detecting the 2009 pandemic influenza A H1N1 virus in patient samples using real-time reverse transcription-polymerase chain reaction (rRT-PCR) methods. These primers and probes were originally developed in 2009 and were cleared by the FDA as part of a domestic human diagnostic testing panel in June 2010. These were also updated to increase specificity and/or sensitivity of the detection methods.

New Anti-Influenza Virus Neuraminidase 9 (N9) Monoclonal Antibody – for Prevention or Treatment of H7N9 Influenza (Flu) A with Less Likelihood of Drug Resistance

H7N9 influenza viruses are predominately avian (bird) pathogens, however, since 2013, they have infected more than 1500 humans with a mortality rate of nearly 40% in confirmed cases. H7N9 viruses continue to be a threat to public health. Treatment for people infected with H7N9-subtype influenza A (H7N9) commonly includes the use of drugs that inhibit neuraminidase, a protein found on the virus’ surface. However, like other influenza viruses, H7N9 can become resistant to these drugs.

Simple and Rapid Loop-Mediated Isothermal Amplification (LAMP)-based Assay for <em>Mycoplasma pneumoniae</em> Detection

Mycoplasma pneumoniae (M. pneumonia) can cause several different types of infection including chest colds and pneumonia. M. pneumoniae is a leading cause of community-acquired pneumonia. People of all ages are at risk for getting M. pneumonia infection, but it is most common among young adults and school-aged children. Current methods of detecting this agent are laborious and time consuming, so testing is not usually performed. However, knowing whether someone has M. pneumoniae infection is important for choosing the right antibiotic for treatment.

Real-time PCR Detection of <em>Streptococcus pneumoniae</em> with High Sensitivity and Specificity

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and is also a frequent cause of bloodstream, brain and spinal cord, ear, and sinus infections. According to 2015 CDC data, an estimated 900,000 Americans get pneumococcal pneumonia each year and approximately 5-7% die from it annually. Accurate diagnosis and early treatment are important for improving patient outcomes.

Encapsulated Streptococcus Compositions and Methods for Pneumococcal Vaccine, Probiotic, and Diagnostic Assay Development

Streptococcus pneumoniae (S. pneumoniae) bacteria, or pneumococcus, can cause many types of illnesses. These range from ear and sinus infections to life-threatening conditions such as pneumonia, bloodstream infections, and meningitis. Pneumococci are surrounded by a polysaccharide capsule, which is thought to help it evade the immune system. Presently, over 90 known serotypes of S. pneumoniae have been identified, of which only a minority produce the majority of pneumococcal infections; a serotype is defined by a unique pneumococcal capsule structure.

One-Step Random Amplification Method to Detect Extremely Low Input Nucleic Acids for Virome, Microbiome, and Metagenomics in Clinical and Biological Specimens

Clinical and biological specimens often contain microbial nucleic acid in extremely low quantities, presenting a significant challenge for the detection of viral and bacterial pathogens. This also prevents direct sequencing of non-culturable samples using next-generation sequencing (NGS). Currently, NGS library preparation on most platforms requires 0.1 ng to 10 µg of DNA or cDNA, while microbial or viral nucleic acids in clinically relevant specimens, such as blood, serum, respiratory secretions, cerebral spinal fluid, and stool, often contain less than 0.1 ng.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

A Diagnostic Kit for Assessing Exposure or Infection by the Koala Family of Retroviruses

This invention relates to a diagnostic kit for assessing exposure to or infection by a koala retrovirus. The kit consists of specific primers and probes for the detection of three distinct subtypes of infectious koala retrovirus and may be useful in various species, including humans, primates, and koalas.