Human Monoclonal Antibodies That Recognize Influenza A Viruses for Vaccine, Therapeutic, and Diagnostic Development

Human influenza A is one of two influenza virus types that cause seasonal epidemics of disease (known as flu season) almost every winter in the United States. Influenza A viruses are the only influenza viruses known to cause flu pandemics (i.e., global epidemics of flu disease). (Source.)

Hybridomas Producing Antibodies to Neuraminidase for Influenza A (H3N2) Diagnostics, Vaccine, and Therapeutic Development

Influenza A and B viruses can cause seasonal flu epidemics ― commonly known as the “flu season” ― and infect the nose, throat, eyes, and lungs in humans. Typically, flu seasons that are dominated by influenza A (H3N2) virus activity have higher associated hospitalizations and deaths in at-risk groups, such as people ages 65 and older and young children. Influenza A (H3N2) virus can also cause respiratory disease in animals, such as canines and swine.

Simultaneous Detection of Non-pneumophila Legionella Strains Using Real-time PCR

Legionnaires' disease is caused by a type of bacteria called Legionella. CDC scientists have developed a real-time multiplex PCR assay for diagnosis and identification of Legionella strains. The assay consists of five sets of primers (targeting L. bozemanii, L. dumoffii, L. feeleii, L. longbeachae, or L. micdadei) and corresponding probes. Each probe is labeled with a different fluorophore which allows the detection of a particular strain in a single tube reaction.

Real-Time RT-PCR Assay for Detection of Noroviruses

A specific and sensitive TaqMan-based real-time (rt) RT-PCR assay has been developed by CDC scientists for detection of noroviruses in clinical and environmental specimens. This assay can be implemented to rapidly detect and distinguish norovirus strains from genogroups I and II, which are responsible for the majority of human infections. Additionally, the assay is multiplexed with an internal extraction control virus (coliphage MS2) to validate the results of the assay.

Real-Time PCR for Detecting Legionella Species and Discriminating Legionella pneumophila

Legionella pneumophila is the causative species in most cases of Legionnaires' disease (LD). CDC scientists have developed a real-time PCR assay capable of detecting all Legionella species and discriminating L. pneumophila from other Legionella species. LD is typically difficult to diagnose from a clinical standpoint as it confers no unique clinical features or symptoms. This assay provides a rapid and accurate alternative to laborious PCR assays, prone to aberrant results.

Real-time TaqMan RT-PCR Assays for Selective Detection of Human Rhinovirus

This invention relates to selective detection of human rhinovirus (HRV) in biological media. Specifically, this invention discloses a real-time TaqMan RT-PCR assay targeting the 5'-noncoding region of the HRV genome. This is a one-step, real-time nucleic acid assay that offers rapid, sensitive, and quantitative results. The assay is validated against all 100 recognized HRV prototype strains.

Linear Epitopes of Anthrax Toxin Protective Antigen for Development of a Peptide Vaccine

Bacillus anthracis is a gram-positive, spore-forming bacteria that causes anthrax infection in humans. CDC inventors have identified epitope sequences of B. anthracis protective antigen (PA) that may be useful for development of peptide-based anthrax vaccines. This invention also relates to methods for determining whether post-vaccination protection is achieved. Specifically, this invention relates to a screening method for determining protection against B.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

sodC-Based Real-Time PCR Assay for Detection of Neisseria meningitidis Infection

CDC researchers have developed a real-time PCR assay for the detection of Neisseria meningitidis sodC within clinical specimens. The ability to detect all strains of N. meningitidis, regardless of individual serogroup, is the central innovation of this technology. Further, the assay is sensitive enough to detect even the very limited sample sizes of N. meningitidis that would typically be found in clinical specimens. This technology avoids potentially catastrophic false-negative results associated with current N.

Real-time PCR Assays for Selective Detection and Differentiation of B. pertussis, B. parapertussis and B. homesii

CDC researchers developed a real-time PCR assay targeting insertion sequence (IS481) and pertussis toxin subunit 1 (ptxS1) of Bordetella pertussis. This real-time nucleic acid assay offers rapid, sensitive, and quantitative results. The employed primers have been validated through extensive diagnostic testing of 41 Bordetella and 64 non-Bordetella clinical isolates. This technology can be used to diagnose and distinguish B. pertussis, B. parapertussis and B.