Vitamin D Receptor Antagonists for Treating Breast Cancer

Vitamin D receptor (VDR) is a nuclear receptor that is activated by calcitriol, the active form of vitamin D. It is best known for regulating dietary calcium uptake necessary for bone growth, but it also affects cell proliferation and differentiation. Therefore, it was thought that treatment with calcitriol or its derivatives could be useful to treat the uncontrolled proliferation typical of cancer cells. However, this approach has been unsuccessful to date because it leads to toxic levels of calcium in the blood.

A Mouse Model for Systemic Inflammation in Glucocerebrosidase-Deficient Mice with Minimal Glucosylceramide Storage

Gaucher disease, the most common lysosomal storage disease, is an inherited metabolic disorder in which harmful quantities of the lipid glucocerebroside accumulate in the spleen, liver, lungs, bone marrow and in rare cases in the brain, due to a deficiency of the enzyme glucocerebrosidase (Gba) that catalyses the first step in the biodegradation of glucocerebrosides. Type 1 Gaucher disease is the most common and is distinguished from the other forms of the disease, types 2 and 3, by the lack of neurologic involvement.

A Mouse with a Targeted Mutation in the Uncoupling Protein-3 (upc3) Gene

The NIH announces the development of a transgenic mouse with a targeted mutation in the ucp3 gene. The ucp3 gene is implicated I the function of regulating energy metabolism. This regulatory function is thought to be accomplished by changing metabolic efficiency (causing energy expended as heat rather than used for ADP/ATP conversion) and/or by participating in fat metabolism. The mutation should inactivate the ucp3 function and the mouse provided a testing vehicle for the above hypotheses.

Methods for Rapid and Specific Fluorescent Staining of Biological Tissue for Laser Capture Microdissection

Available for licensing and commercial development are methods for rapid and specific fluorescent staining of biological tissue samples that substantially preserve biological molecules such as mRNA. Also within the scope of the invention are methods for microdissecting tissue to obtain pure populations of cells or tissue structures based upon identifying and excising cells or tissue structures that are labeled with fluorescent specific binding agents.

Rapid and Sensitive Detection of Nucleic Acid Sequence Variations

The ability to easily detect small mutations in nucleic acids, such as single base substitutions, can provide a powerful tool for use in cancer detection, perinatal screens for inherited diseases, and analysis of genetic polymorphisms such as genetic mapping or for identification purposes. Current approaches make use of the mismatch that occurs between complimentary strands of DNA when there is a genetic mutation, the electrophoretic mobility differences caused by small sequence changes, and chemicals or enzymes that can cleave heteroduplex sites.

Generation of Smad3-null Mice and Smad4-conditional Mice

SMADs are a novel set of mammalian proteins that act downstream of TGF-beta family ligands. These proteins can be categorized into three distinct functional sets, receptor-activated SMADs (SMADs 1,2,3,5, and 8), the common mediator SMAD (SMAD 4), and inhibitory SMADs (SMADs 6 and 7). SMAD proteins are thought to play a role in vertebrate development and tumorigenesis.

A Nurr1-Knockout Mouse Model for Parkinson's Disease and Stem Cell Differentiation

The researchers have generated Nurr1-knockout mice via genomic locus inactivation using homologous recombination.

Transcription factor Nurr1 is an obligatory factor for neurotransmitter dopamine biosynthesis in ventral midbrain. From a neurological and clinical perspective, it suggests an entirely new mechanism for dopamine depletion in a region where dopamine is known to be involved in Parkinson's disease. Activation of Nurr1 may be therapeutically useful for Parkinson's disease patients; therefore, the mice would be useful in Parkinson's disease research.

A Broadly Protective Human Antibody for GI Genogroup Noroviruses

Norovirus is a leading cause of vomiting, diarrhea, and foodborne illness worldwide, with 700 million cases and 200,000 deaths occurring each year. Despite decades of work in the field, there are no preventive or therapeutic strategies specifically approved for even the most prevalent forms of human norovirus (i.e., GI, GII genogroups), which are highly contagious and carry an increased risk of severe complications in children, older adults, and those with immunocompromising conditions.