Devices and Methods for Cerclage of Luminal Systems

This technology includes a family of transcatheter endovenous intramyocardial tether (MIRTH) procedures to impose myocardial constraint on the LV (MIRTH), LV and RV (SCIMITAR), and cardiac resynchronization procedures. Included is a set of advanced cardiac treatment technologies that focus on minimally invasive procedures for heart patients. The main technology is the transcatheter endovenous intramyocardial tether (MIRTH) procedure, which is designed to apply physical constraint to the left ventricle (LV) of the heart.

Expanded Claims for Transcatheter Coronary Sinus Mitral Valve Annuloplasty Procedure and Coronary Artery and Myocardial Protection

This technology includes a novel transcatheter repair for functional mitral valve regurgitation, called mitral cerclage annuloplasty. This includes coronary artery protection for mitral cerclage annuloplasty against inside-out compression from subsequent transcatheter valve-in-ring mitral valve implantation, wherein the ring is created by the cerclage annuloplasty. Cerclage annuloplasty is to create a semi-rigid ring at the level of the mitral annulus.

Segmented Metallic MRI Guidewires Using Stiffness-matched Nonconductive Connectors for Catheterization Procedures

This technology includes a metallic guidewire that is suitable for MRI catheterization, because it is mechanically long but electrically consists of short conductive segments that cannot resonate during MRI. The invention consists of stiffness-matched non-conductive connectors or connections that are used along with short metallic segments. The embodiment reduced to practice has torquability and flexibility comparable to marketed metallic guidewires, yet is free from MRI heating.

Development of a High-Throughput Screening Tool for RSV Inhibition Using Engineered RSV Expressing GFP and Luciferase Genes

The technology involves the genetic engineering of Respiratory Syncytial Virus (RSV) to express two additional genes, green fluorescent protein (GFP) and Renilla luciferase, from different positions within the viral genome. GFP serves as a visual marker for RSV infection, allowing researchers to monitor and track infected cells using fluorescence microscopy, while luciferase functions as a highly sensitive reporter gene that enables quantitative assessment of viral replication through enzymatic assays.

Enhanced GFP-Expressing Human Metapneumovirus (HMPV): A Versatile Tool for Virology Research and Antiviral Drug Screening

The technology involves genetically engineering Human Metapneumovirus (HMPV) to express enhanced green fluorescent protein (GFP), enabling the monitoring of virus infection and gene expression through GFP fluorescence. This system serves as a sensitive and versatile tool for virology research, antiviral drug screening, and diagnostic applications.

Optimizing RSV Infection Monitoring and High-Throughput Screening Through GFP Expression in the First-Gene Position of Respiratory Syncytial Virus (RSV) Strain A2

In this technology, researchers have engineered a modified version of Respiratory Syncytial Virus (RSV) strain A2 using reverse genetics to incorporate green fluorescent protein (GFP) into the first-gene position. This genetic modification allows for the efficient monitoring of RSV infection and the screening of potential chemical inhibitors. The GFP expression can be easily detected through fluorescence microscopy in live or fixed cells, providing a sensitive tool for both research and drug discovery.

Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

DeePlexing – Extending Imaging Multiplexity Using Machine Learning

Spatial proteomics and transcriptomics are fast-emerging fields with the potential to revolutionize various branches of biology. In the last five years, various multiplex immunofluorescence and immunohistochemistry imaging methods have been developed to stain 5-60 different protein markers in a given tissue. Nonetheless, most of these techniques are iterative and can image a maximum of 3-8 markers in a single cycle, resulting in processing time of several hours to days.