Local Positioning System for Position-Time-Condition Correlation, Data-logging and Analysis

This CDC-developed technology describes an automated system for monitoring worker hazard exposures by recording data about where and when hazards occur in a workplace or other environment. This allows the hazards to be avoided and harmful exposures and risks reduced. This field-tested technology consists of an integrated, hand-held electronics instrument and software system that will precisely correlate multiple exposure levels with position coordinates of the user and features real-time data acquisition.

Mobile Instrumentation for the Detection and Sampling of Aerosol Particles

Hazardous airborne particles pose a risk for health and safety in a variety of environments and thus detection of these small particles is essential. Current particle magnification systems are bulky and require a lot of power for operation, making them unsuitable to easily detect and analyze small particles in mobile and personal settings.

Emergency Maritime Battery Charger

Boats and other watercrafts have emergency lifesaving equipment like strobe lamps to help rescuers locate individuals overboard in the event of a disaster. The battery life of the equipment is limited, so the amount of time rescuers have to find the victims is also limited. An emergency battery charger that can power emergency equipment is needed to remove this limitation.

Adjustable Barricade Safety Rail System and Roof Bracket Assembly to Prevent Worker Falls

Falls are the leading cause of death in construction. In 2016, there were 370 fatal falls out of 991 construction fatalities (Bureau of Labor Statistics, Census of Fatal Occupational Injuries data). These deaths are preventable. According to the Occupational Safety and Health Administration, employers must set up the workplace to prevent employees from falling from overhead platforms, elevated work stations, or into holes in the floor and walls.

Wipes and Methods for Removal of Lead and Other Metal Contamination from Surfaces

Exposure to lead (Pb) has long posed serious health risks. Ingestion of lead from skin exposure can adversely impact every organ in the body; the kidneys, blood, nervous, and reproductive systems are most affected. Washing skin with soap and water is not sufficient to remove lead residues. To prevent adverse impacts from Pb exposure, exposed individuals need cleaning methods that will effectively remove Pb ions from the skin to less than the limit of identification (i.e., 10 µg or less).

Methods for near real-time aerosol chemical analysis for environmental and occupational monitoring

­Exposures to hazardous airborne particles can pose a significant health risk to those routinely exposed in ambient air and industrial work environments. Measuring chemical composition and concentration of aerosol particles is important to preventing worker exposures and protecting health.

Methods of Predicting Patient Treatment Response and Resistance via Single-Cell Transcriptomics of Their Tumors

Tailoring the best treatments to cancer patients remains a highly important endeavor in the oncology field. However, personalized treatment courses are challenging to determine, and technologies or methods that can successfully be employed for precision oncology are lacking.

High-Throughput Assay for Detection and Monitoring of Endocrine Disrupting Chemicals in Water Sources

There is growing awareness that a wide variety of synthetic and natural compounds that may be present in water sources, such as streams, wells, and ground water, may lead to adverse health effects, including increased cancer risk. Even low concentrations of these compounds are of concern, as they may have biological effects at concentrations of parts per billion or less.

Automatic System and Method for Tissue Sectioning, Staining, and Scanning

Computer and imaging technologies led to the development of digital pathology and the capture and storage of pathological specimens as digitally formatted images. The use of artificial intelligence (AI) in digital pathology, such as in three-dimensional (3D) reconstruction, requires analyses of high volumes of data. This results in increased demands for processing and acquisition of digital images of pathology samples. Increased usage cannot be met by the time-consuming, manual, and laborious methods currently used.