Treatment of Oculocutaneous/Ocular Albinism and for Increasing Pigmentation

Albinism (also called achromia, achromasia, or achromatosis) is a congenital disorder characterized by the complete or partial absence of pigment in the skin, hair and eyes due to absence or defect in any one of a number of proteins involved in the production of melanin.  Certain forms of albinism are known to be due to mutations in tyrosine metabolism.  In oculocutaneous albinism (OCA), pigment is lacking in the eyes, skin and hair.  In ocular albinism, only the eyes lack pigment.  Patients with albinism experience varying degrees of vision loss associated with foveal h

Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method

DNA or RNA-based diagnostic tests for infectious diseases are critical in modern medicine. The current gold standard for COVID-19 detection is testing SARS-CoV-2 viral RNA by quantitative reverse transcription Polymerase Chain Reaction (RT-qPCR). This method involves patient sample collection with a nasopharyngeal swab, storage of the swab in a universal transport medium during transport to testing site, RNA extraction, and analysis of the extracted RNA sample.

Dual Specific Anti-CD22 Anti-CD19 Bicistronic Chimeric Antigen Receptors (CARs)

Treatment of B-cell acute lymphoblastic leukemia (ALL) and lymphoma using chimeric antigen receptors (CARs) targeting B-cell surface protein CD19 has demonstrated impressive clinical results in children and young adults. Despite the promising results from CD19 CAR therapy, up to 40% of patients, who initially achieve remission, eventually relapse. Relapse or non-response to CD19-directed CAR therapy may be due to low or diminished CD19 expression. Such patients would be predicted to benefit from CAR therapies targeting other B-cell surface proteins, such as CD22.

Chimeric Antigen Receptors to CD22 for Treating Hematological Cancers

Chimeric antigen receptors (CARs) are hybrid proteins consisting of an antibody binding fragment fused to protein signaling domains that cause T-cells which express the CAR to become cytotoxic.  Once activated, these cytotoxic T-cells can selectively eliminate the cells which they recognize via the antibody binding fragment of the CAR.  Thus, by engineering a T-cell to express a CAR that is specific for a certain cell surface protein, it is possible to selectively target those cells for destruction.  This promising new therapeutic approach is known as adoptive cell therapy.

Bivalent, Dual Specific Anti-CD22 Anti-CD19 Chimeric Antigen Receptors (CARs)

Chimeric antigen receptors (CARs) combine an antibody-based binding domain (and single chain fragment variable region, scFv) with T cell receptor signaling domains (CD3 zeta with a costimulatory domain, typically CD28 or 41BB). When T cells express CARs, they are activated in a major histocompatibility complex- (MHC) independent manner to kill tumor cells expressing the target to which the scFv binds.  CAR T cells targeting the B cell antigen CD19 have resulted in remissions in 60-80% of patients with pre-B cell precursor acute lymphoblastic leukemia (BCP-ALL).

Non-invasive diagnostic and prognostic assay for early stage lung cancer

In the United States alone, one of four cancer deaths occur from lung cancer and there are over 8 million individuals considered to be at high-risk due to cigarette smoking and other behaviors. It's well known that early detection of cancer significantly improves survival of this disease, however a lack of lung cancer screenings and analysis precludes fast results at a low cost.

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed. 

 

T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed.