Therapeutics for Neurodegenerative Disorders and Cancer Using Lenalidomide Analogs

Inflammatory processes associated with the over-production of tumor necrosis-alpha (TNF-alpha), a potent activator of the immune system accompany numerous neurodegenerative diseases. TNF-alpha has been validated as a drug target with the development of the inhibitors Enbrel and Remicade (fusion antibodies) as prescription medications. Both, however, are large macromolecules that require direct injection and have limited brain access.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene are among the most common oncogenic drivers in human cancers, affecting nearly a third of all solid tumors. Point mutations in the KRAS gene most frequently affect amino acid position 12, resulting in the substitution of the native glycine (G) residue for other amino acids (e.g., aspartic acid (D), valine (V), cysteine (C) or arginine (R)).

Clinical Outcome Predictors for Mantle Cell Lymphoma

Mantle cell lymphoma (MCL) is a group of aggressive B-cell lymphomas displaying heterogeneous outcomes after treatment.  Some patients have the slowly progressing disease that does not require immediate treatment, while others have a disease that rapidly progresses despite highly aggressive treatment. A number of prognostic tools have been described to determine whether patients have slow or rapidly progressing diseases, including the mantle cell lymphoma International Prognostic Index (MIPI) and biomarkers, such as KI-67.

HLA-class II-restricted T Cell Receptors for PIK3CA “Hotspot” Mutations, E545K and N345K

Summary: 

The National Cancer Institute (NCI) seeks co-development partners and/or licensees for a collection of T cell receptors (TCRs) that specifically target PIK3CA mutations to treat patients with tumors expressing these mutations in the context of HLA-DPA1*01:03:01, HLA-DPB1*04:01:01 or HLA-DRB1*04:01.

Description of Technology:

Methods and Compositions for Treating Genetically Linked Diseases of the Eye

X-linked retinoschisis (XLRS) is an inherited, monogenetic ocular disease caused by mutations in the retinoschisin (RS1) gene, resulting in the development of cystic cavities throughout the retina and leading to juvenile macular degeneration. Approximately 1:15,000 males in the US are affected, classifying the condition as an orphan indication.