Chlamydial Vaccine Technologies

The National Institute of Allergy and Infectious Diseases has invented three chlamydial vaccine technologies, which have shown promising preclinical efficacy. Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection. If left untreated, chlamydia infection can lead to pelvic inflammatory disease and infertility. Chlamydia is also the leading cause of preventable blindness in the world. Despite increased surveillance, prevalence continues to increase, and the need to develop an effective chlamydial vaccine remains.

Technologies:

Mononegavirales Vectors expressing Chimeric Antigens

Human respiratory syncytial virus (RSV) continues to be the leading viral cause of severe acute lower respiratory tract disease in infants and children worldwide. A licensed vaccine or antiviral drug suitable for routine use remains unavailable. This invention relates to the use of murine pneumonia virus (MPV), a virus to which humans normally are not exposed to and that is not cross-protected with RSV, as a vector to express the RSV fusion (F) glycoprotein as an RSV vaccine candidate. The RSV F ORF was codon optimized.

Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP as an Intranasal Ebola Vaccine

Ebola virus (EBOV) hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. EBOV is transmitted by contact with body fluids from infected individuals including droplets or aerosols. Aerosolized EBOV could also be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal and systemic exposure are needed.

Recombinant RSV B1 expressing eGFP as a reporter gene

The inventors have created a reverse genetics system for RSV strain B1 of antigenic subgroup B encoding a replication-competent recombinant RSV that contains a codon-optimized G ORF and expresses enhanced green fluorescence protein (GFP). There are two antigenic subgroups of RSV, subgroups A and B, and most of the available information and reagents are for subgroup A. Immunity against either subgroup has reduced effectiveness in restricting the heterologous subgroup, suggesting that an effective RSV vaccine might need to contain both subgroups.

Hybridoma cell lines producing antibodies to RSV NS1

This technology provides a new set of hybridoma cell lines each expressing a single monoclonal antibody against human respiratory syncytial virus (RSV) nonstructural protein 1 (NS1). These antibodies have variously been shown to detect NS1 protein in an enzyme-linked immunosorbent assay (ELISA), Western blot assay, immunofluorescence microscopy of paraformaldehyde-fixed cells, and flow cytometry. The various antibodies can vary in their efficiency in each of these assays.

Fusion Glycoprotein Vaccine for Human Metapneumovirus

Human metapneumovirus (hMPV), a negative, single-stranded RNA virus, accounts for approximately 5-15% of infant respiratory tract infections and poses a severe risk of disease and hospitalization in both the elderly and the immunocompromised. Investigators at the Vaccine Research Center (VRC) of the National Institute of Allergy and Infectious Diseases (NIAID) have generated an hMPV fusion glycoprotein (“F protein”) stabilized in a prefusion conformation.

Middle East Respiratory Syndrome Coronavirus Antibodies

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. Currently there are no prophylactic measures or effective therapies. Inventors at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases have identified and developed neutralizing monoclonal antibodies (nMAbs) against the MERS-CoV. This invention describes antibodies that target the Spike (S) glycoprotein on the coronavirus surface, which mediates viral entry into host cells.

Encapsulated Streptococcus Compositions and Methods for Pneumococcal Vaccine, Probiotic, and Diagnostic Assay Development

Streptococcus pneumoniae (S. pneumoniae) bacteria, or pneumococcus, can cause many types of illnesses. These range from ear and sinus infections to life-threatening conditions such as pneumonia, bloodstream infections, and meningitis. Pneumococci are surrounded by a polysaccharide capsule, which is thought to help it evade the immune system. Presently, over 90 known serotypes of S. pneumoniae have been identified, of which only a minority produce the majority of pneumococcal infections; a serotype is defined by a unique pneumococcal capsule structure.

Monoclonal Antibodies Against Bacillus Anthracis Antigens

Anthrax, whether resulting from natural or bioterrorist-associated exposure, is a constant threat to human health. Bacillus anthracis is the causative agent of anthrax. It is surrounded by a polypeptide capsule of poly-gamma-D-glutamic acid (gamma-D-PGA), which is essential for virulence, is poorly immunogenic and has anti-phagocytic properties. Antibodies to the capsule have been shown to enhance phagocytosis and killing of encapsulated bacilli.