A Novel Transgenic Zebrafish Line Reporting Dynamic Epigenetic Changes
Currently, there is no other whole-animal reporter for epigenetic regulation established in any vertebrate.
Currently, there is no other whole-animal reporter for epigenetic regulation established in any vertebrate.
This technology includes a micro-engineered “thyroid-on-a-chip” that combines human thyroid organoids with integrated micro-vasculature to replicate the gland’s native blood flow and 3-D architecture, enabling rapid, patient-specific drug screening. By permitting real-time perfusion of nutrients, hormones, and immune cells, the platform yields more physiologically relevant data than conventional static cultures or animal surrogates.
Scientists at the NCI developed a research tool, a murine cell line model (JygMC(A)) with a reporter construct, of spontaneous metastatic mammary carcinoma that resembles the human breast cancer metastatic process in a triple negative mammary tumor. The assay is useful for screening compounds that specifically inhibit pathways involved in mammary carcinoma and can improve clinical management of of triple negative breast cancer that are greatly refractory to conventional chemo and radiotherapy.
Tumor-specific mutated proteins can create neoepitopes, mutation-derived antigens that distinguish tumor cells from healthy cells, which are attractive targets for adoptive cell therapies. However, the process of precisely identifying the neoepitopes to target is complex and challenging. One method to identify such neoepitopes is Mass Spectrometry (MS) when used in conjunction with elution of peptides bound to a specific Human Leukocyte Antigen (HLA) allele.
Scientists at NIAID have developed two immortalized stable B cell lines from rhesus macaques that can have value as research tools for the discovery of neutralizing antibodies of simian origin against HIV and that may have value in the development of an HIV vaccine. These B cell lines encode human Bcl-6 and Bcl-xL proteins, which are major regulators of apoptosis. These B cell lines are derived from the lymph node of a rhesus macaque (RM) that was infected with SHIV.CH505.
This technology includes a novel advancement in developing vaccines targeting norovirus, tailored specifically for a more robust and effective response. It centers around an improved version of Virus-Like Particles (VLPs) uniquely engineered for greater stability and efficacy. These enhanced VLPs are designed to remain intact even when faced with the body's immune responses, overcoming a key limitation of previous vaccine designs.