Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

A Novel Demodulation System in X-ray Imaging

In various x-ray imaging methods, including scattering correction and phase contrast imaging, intensity modulation in space is introduced into the projection images by the use of masks, gratings, or apertures. The present invention relates to a process to demodulate the modulation. The current demodulation processes are either to remove the modulation pattern through digital processing or to move the modulation pattern on the detector in a series of images that requires mechanical movements of a component and tends to lose some information of the imaged object.

A Novel X-ray Grating to Enhance Phase Contrast Imaging

The present invention relates to improving x-ray phase contrast imaging. The invention discloses a novel grating interferometer for phase contrast imaging with hard x-rays that overcomes limitations in the level of sensitivity by utilizing the advantages of far-field interferometers. The novel design and fabrication process can easily acquire absolute and differential phase images of lightly absorbing samples.

A Current Amplifier for Local Coil Pre-amplification of NMR/MRI Signals

The magnetic resonance imaging (MRI) systems are used for a variety of imaging application. The present invention discloses an improving MRI device and method by amplifying signals received by resonant NMR coils of MRI systems. It utilizes positive feedback from low-noise Field-Effect Transistor to amplify the signal current that can be coupled out to receiving loops positioned externally without loss in sensitivity. Therefore, the NMR coil can be flexibly positioned near internal tissues and used to develop high-resolution images in highly invasive situations.

Microscopy System for Distinguishing Stimulated Emissions as a Means of Increasing Signal

The invention pertains to a system and method for distinguishing stimulated emissions as a means of enhancing signal strength of fluorescent markers in fluorescence microscopy applications. The system is arranged such that an excitation beam (e.g., laser beam) illuminates a sample along some axis exciting the fluorescent markers used in the sample. A second light beam, a stimulation beam, illuminates the sample along another axis, possibly the same as that of the excitation beam.

Ultra-sensitive Diagnostic Detects fg/mL-pg/mL Pathogen/Disease Protein by Visual Color Change

This technology is an ultra-sensitive colorimetric assay, based on an enzyme-catalyzed gold nanoparticle growth process, for detection of disease-associated proteins (biomarkers) and disease diagnosis. Current detection methods, such as ELISA immunoassays, measure concentrations above 0.1 ng/mL in a sample. PCR, although more sensitive than ELISA, requires expensive and specialized equipment and reagents, skilled labor, and complex analysis techniques. This assay detects fg/mL to pg/mL concentrations, allowing detection and diagnosis in the earliest stage of disease or infection.

Octopod (8-Pointed Star) Iron Oxide Nanoparticles Enhance MRI T2 Contrast

The octopod-shaped iron oxide nanoparticles of this technology significantly enhance contrast in MRI imaging compared to spherical superparamagnetic iron oxide nanoparticle T2 contrast agents. These octopod iron oxide nanoparticles show a transverse relaxivity that is over five times greater than comparable spherical agents. Because the unique octopod shape creates a greater effective radius than spherical agents, but maintains similar magnetization properties, the relaxation rate is improved. The improved relaxation rate greatly enhances the contrast of images.

Remotely Monitored Mouse Feeding Experimentation Device

How much does a mouse eat per day? If a researcher is conducting dietary studies, the answer is very important. For instance, obesity studies require accurate measures of feeding. Existing automated methods for taking feeding measurements are expensive and use specialized caging that is not compatible with typical vivarium colony racks. As a result, many researchers simply weigh food each day or two to determine how much food the mice ate. This is time-consuming, can be error prone, and provides a low temporal resolution view of feeding.