Polarimetric Accessory for Colposcope

In medical diagnostic procedures for examining the cervix and the tissues of the vagina and vulva, long working-distance (-30 cm) lighted binocular microscopes (colposcope) that provide up to 25x optical magnification are used to create an illuminated magnified view. Speculum dilations can give rise to specular reflections from the tissue surface, causing physicians to overlook possible abnormalities – thus decreasing the quality of a colposcopy. 

A Specialized Tissue Collection Device for the Preservation and Transportation of Needle Biopsies

The ability to hold and transport tissue, especially needle biopsies in a pre-defined and controlled environment is critical for the preservation of biopsy samples in downstream analytic applications. Currently, tissue specimens are placed in open containers with variable, poorly controlled solutions applied to them, often in less than sterile conditions.  Evaluation of the tissue by examination through a stereoscope or similar approaches to determine adequacy is limited and requires manipulation of the tissue that can further damage the tissue.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

AngleNav: Micro-Electro-Mechanical Systems (MEMs) Trackers to Facilitate Computed Topography (CT)-Guided Needle Puncture

Conventional free-hand needle puncture procedures for biopsy and other procedures, often rely on unguided manual movements to guide a needle to its destination. Freehand procedures risk missing the tumor, or accidental injury, such as puncturing a vital organ. Needle guidance systems may improve accuracy and reduce risks but available guidance technologies are cumbersome and expensive and may carry other risks.

Transperineal Ultrasound-Guided Prostate Biopsy

Prostate cancer is the most common male cancer in the United States, and the third most common worldwide. Prostate biopsies are often performed to confirm a cancer diagnosis and examine suspect tissue. Prostate biopsies are most often performed under transrectal ultrasound imaging (TRUS) guidance. TRUS images in real-time, at relatively low cost, and shows both prostate and boundaries. However, major problems with TRUS imaging are poor spatial resolution and low sensitivity for cancer detection.

A peptide hydrogel for use in vascular anastomosis

In collaboration with surgery specialists from Johns Hopkins University, researchers at the National Cancer Institute (NCI) developed novel hydrogel compositions and methods of using them in the microsurgical suturing of blood vessels, which is particularly beneficial for surgeons in whole tissue transplant procedures. The lead candidate electropositive hydrogels, called APC1, was demonstrated in anastomosis mice models to be well tolerated, biocompatible, and non-toxic.

Module to Freeze and Store Frozen Tissue

Tissue obtained for both clinical and research purposes is routinely frozen, commonly in Optimal Cutting Temperature (OCT), an embedding media, for eventual downstream analysis, commonly including sectioning on a cryostat. Though OCT is the standard compound used for freezing, there is no standard freezing protocol. Thus, current methods of handling, labeling, and storing OCT-embedded tissue vary widely, and specimens are often damaged or degraded due to undesirable temperature fluctuations during handling and freezing.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Tissues samples collected during medical procedures, such as biopsies, are used to diagnose a wide variety of diseases. Before diagnosis, patient samples are typically processed by fixation and paraffin embedding. This fixation/embedding process is used to preserve tissue morphology and histology for subsequent evaluation. Unfortunately, most fixative agents can damage or destroy nucleic acids (RNA and DNA) and damage proteins during the fixation process, thereby potentially impairing diagnostic assessment of tissue.

Engineered Biological Pacemakers

The National Institute on Aging's (NIA) Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

A common symptom of many heart diseases is an abnormal heart rhythm or arrhythmia. While effectively improving the lives of many patients, implantable pacemakers have significant limitations such as limited power sources, risk of infections, potential for interference from other devices, and absence of autonomic rate modulation.