Species-Independent A3 Adenosine Receptor Agonists Which May Be Useful for Treating Ischemia, Controlling Inflammation, and Regulating Cell Proliferation

This invention claims species-independent agonists of A3AR, specifically (N)-methanocarba adenine nucleosides and pharmaceutical compositions comprising such nucleosides. The A3 adenosine receptor (A3AR) subtype has been linked with helping protect the heart from ischemia, controlling inflammation, and regulating cell proliferation. Agonists of the human A3AR subtype have been developed that are also selective for the mouse A3AR while retaining selectivity for the human receptor.

NAG-1: A Non-Steroidal Anti-Inflammatory Drug Related Gene Which Has Anti-Tumorigenic Properties

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of inflammatory disease, and their anti-inflammatory effects are believed to result from their ability to inhibit the formation of prostaglandins by prostaglandin H synthase (COX). Two forms of prostaglandin H have been identified, COX-1 and COX-2. The former seems to be constitutively expressed in a variety of tissues while the high expression of the latter has been reported in colorectal tumors. NSAIDs have been shown to be effective in reducing human colorectal cancers and possibly breast and lung cancers.

Transgenic Mice with Conditionally-Enhanced Bone Morphogen Protein (BMP) Signaling: A Model for Human Bone Diseases

This technology relates to novel animal models of several human bone diseases that have been linked to enhanced BMP signaling. More specifically, this mouse model expresses a mutant receptor for BMP, known as Alk2 that is always actively signaling. This receptor is under the control of the Cre-loxP system, which allows control of expression of the mutant Alk2 in both a developmental and tissue-specific manner. As a result, the enhanced signaling conditions exhibited in multiple human bone-related diseases can be studied with the same animals.

Cell Based Immunotherapy

The invention hereby offered for licensing is in the field of Immunotherapy and more specifically in therapy of autoimmune diseases such as Type I diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis and immune mediated allergies such as asthma as well as in transplantation-related disorders, such as graft acceptance and graft-versus-host-disease (GVHD).

Mouse Monoclonal Antibodies to Human Tristetraprolin (TTP)

TTP has been implicated in autoimmune and inflammatory diseases through its role as a regulator of the transcripts encoding several pro-inflammatory cytokines, including tumor necrosis factor alpha. However, it has been difficult to study endogenous TTP in man and other animals because it is expressed at very low levels in most cells and tissues, and because of the lack of mouse monoclonal antibodies directed at the human protein.

PTH2 and PTH1 Receptor Ligands

Parathyroid hormone receptors found on osteoblasts in bone and renal tubule cells in kidney elevate blood calcium levels when stimulated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Excessive secretion of PTH from the parathyroid gland results in primary hyperparathyroidism. Production of PTHrP by various tumors results in humoral hypercalcemia of malignancy. In both of these conditions, excessive blood calcium levels lead to clinically significant morbidity. A parathyroid hormone antagonist could therefore have therapeutic value.

Adult Human Dental Pulp Stem Cells in vitro and in vivo

Many individuals with ongoing and severe dental problems are faced with the prospect of permanent tooth loss. Examples include dentinal degradation due to caries or periodontal disease; (accidental) injury to the mouth; and surgical removal of teeth due to tumors associated with the jaw. Clearly, a technology that offers a possible alternative to artificial dentures by designing and transplanting a set of living teeth fashioned from the patient's own pulp cells would greatly improve the individual's quality of life.

qPCR Assay for Detection of JC Virus

JC Virus causes a fatal disease in the brain called progressive multifocal leukoencephalopathy (PML) that occurs in many patients with immunocompromised conditions. For example, more than five percent (5%) of AIDS patients develop PML. Additionally, these conditions include, but are not limited to, cancers such as leukemias and lymphomas, organ transplants such as kidney, heart and autoimmune conditions with treatment that modulates the immune system such as Multiple Sclerosis (MS), rheumatoid arthritis, psoriasis, and systemic lupus erythematosus.

Therapeutic Peptide Treatment for Dyslipidemic and Vascular Disorders

This invention is directed to use of certain peptide analogs comprising multiple amphipathic helical domains that are able to promote cellular lipid efflux and stimulate lipoprotein lipase activity. As a result, administration of invention peptides lead to reduced incidences of hypertriglyceridemia without inducing toxicity. Existing peptides that stimulate efflux of lipids from cells exhibit unacceptably high toxicity. Invention peptides are superior to existing peptides and can also be used to treat or prevent a vast range of vascular diseases, and their dyslipidemic precursors.

RORgamma (RORC) Deficient Mice Which Are Useful for the Study of Lymph Node Organogenesis and Immune Responses

The retinoid-related orphan receptor gamma (RORgamma) is a member of the nuclear receptor superfamily. NIH investigators used homologous recombination in embryonic stem cells to generate mice in which the RORgamma gene was disrupted. RORgamma deficient mice lack peripheral and mesenteric lymph nodes and Peyer's patches indicating that ROR expression is indispensable for lymph node organogenesis. In addition, RORgamma is required for the generation of Th17 cells which play a critical role in autoimmune disease.