Microscopy System for Distinguishing Stimulated Emissions as a Means of Increasing Signal

The invention pertains to a system and method for distinguishing stimulated emissions as a means of enhancing signal strength of fluorescent markers in fluorescence microscopy applications. The system is arranged such that an excitation beam (e.g., laser beam) illuminates a sample along some axis exciting the fluorescent markers used in the sample. A second light beam, a stimulation beam, illuminates the sample along another axis, possibly the same as that of the excitation beam.

Octopod (8-Pointed Star) Iron Oxide Nanoparticles Enhance MRI T2 Contrast

The octopod-shaped iron oxide nanoparticles of this technology significantly enhance contrast in MRI imaging compared to spherical superparamagnetic iron oxide nanoparticle T2 contrast agents. These octopod iron oxide nanoparticles show a transverse relaxivity that is over five times greater than comparable spherical agents. Because the unique octopod shape creates a greater effective radius than spherical agents, but maintains similar magnetization properties, the relaxation rate is improved. The improved relaxation rate greatly enhances the contrast of images.

Highly Sensitive Tethered-Bead Immune Sandwich Assay

This technology is a highly sensitive tethered-bead immune sandwich assay. Analyte molecules are captured between two antibodies, a capture antibody and a detection antibody. The capture antibody on a micron-size bead binds analyte from a sample fluid. The bead-captured analyte is then exposed to a “detection” antibody that binds to the bead-captured analyte, forming a “sandwich”. The sandwiched analyte-bead complex then connects to a flexible polymer (such as DNA) anchored on a solid surface to form tethered particles.

Three-Dimensional Curved Catheter for Right Atrial Appendage Traversal

Available for licensing and commercial development is a three-dimensionally configured curved catheter for safe traversal of the right atrial appendage (RAA). The device is configured to optimize one-way access of the pericardial space through the right atrium and into the RAA reducing the risk of coronary lacerations. Specifically the curved catheter is best described in three segments: a proximal segment, a transitional segment and a distal segment; the transition segment having a clockwise spiral shaped curvature.

Metallic Nanoparticles for Photothermal Therapy

The invention relates to the preparation and application of 20-150nm metallic nanoparticulate vesicles for photothermal anti-cancer therapy. The vesicles comprise metallic nanoparticles covalently bound to a hydrophilic and hydrophobic polymer. The preparation method generally entails dispersing a polymer-bound metallic nanoparticle in an organic solvent, adding an aqueous solution with a dispersing aid, sonicating the mixture, and finally removing the organic solvent until the vesicle forms.

Long Acting Therapeutic Conjugates with Evans Blue

This invention is a platform technology that pertains to the advantages of conjugating therapeutics to Evans Blue thus providing long lasting pharmacokinetic profiles by complexing with albumin. Notably, albumin bound therapeutic- or prodrug-Evans Blue conjugates provide a complex with a total molecular size above 60 kDa thus eliminating the risk for renal clearance. Interestingly, since albumin also crosses the blood-brain barrier and since all circulating Evans Blue is bound to albumin, Evans Blue bound therapeutics or prodrugs can also cross the blood-brain barrier.

Remotely Monitored Mouse Feeding Experimentation Device

How much does a mouse eat per day? If a researcher is conducting dietary studies, the answer is very important. For instance, obesity studies require accurate measures of feeding. Existing automated methods for taking feeding measurements are expensive and use specialized caging that is not compatible with typical vivarium colony racks. As a result, many researchers simply weigh food each day or two to determine how much food the mice ate. This is time-consuming, can be error prone, and provides a low temporal resolution view of feeding.

Polyvalent Influenza Virus-Like Particles (VLPs) and Use as Vaccines

Influenza virus is a major public health concern, causing up to 500,000 deaths annually. The current strategy of reformulating vaccines annually against dominant circulating strains leads to variable protective efficacy and is unlikely to protect against novel influenza viruses with pandemic potential. Thus, there is a great need for a vaccine that provides “universal” protection against influenza viruses.

Enhanced Functionalization of Carbon Nanoparticles for Biomedical Applications

The invention pertains to methods of increasing the density of carboxylic acids on the surface of a carbon nanoparticle that can be functionalized with biologically relevant molecules, such as antibodies or peptides, for biomedical applications. Advantageously, the method could increase functionalization of a nanoparticle by at least about 1x107 functional groups/g of nanoparticle.