New Allosteric Inhibitors of C-Abl Tyrosine Kinase for the Treatment of Alzheimer’s and other Neurodegenerative Diseases

This technology includes a variety of structures that can effectively target the c-Abl myristate binding pocket with increased potency and brain permeability. C-Abl is a ubiquitous non-receptor tyrosine kinase involved in signal transduction. In addition to its classic function in leukemia pathogenesis, c-Abl kinase is also thought to play a role in neuronal health, whereby deregulation of c-Abl could be related to early neuronal dysfunction and cytoskeletal alterations.

Selective KCNH2-3.1 Inhibitors for the Treatment of Schizophrenia and Other CNS Disorders

This technology includes compounds, pharmaceutical compositions and methods of treating or preventing neurological or psychiatric disorders for which inhibiting KCNH2-3.1 containing potassium channels provides a therapeutic effect. Polymorphisms in the KCNH2 gene have been associated with altered cognitive function and schizophrenia. The KCNH2 gene encodes the protein which forms the human ether-a-go-go related (hERG) voltage-gated potassium channel 4, 5.

Discovery of DPTIP a Small Molecule Inhibitor of Neutral Sphingomyelinase 2 (nSMase2) for the Treatment of Neurodegenerative and Oncologic Diseases

This technology includes a newly discovered molecule 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP) as potent inhibitor of neutral sphingomyelinase 2 (nSMase2), to be used for the treatment of neurodegenerative and oncologic diseases. This discovery was identified through unbiased screening of the National Center for Advancing Chemical Sciences (NCATS) chemical library using our human neutral sphingomyelinase assay.

A Method for the Measurement of Cellular FMRP Levels for High Throughput Screening and Diagnosis of Fragile X Syndrome

This technology includes a precise measurement assay of cellular FMRP levels in patients, which can assist in the diagnosis and assess the severity of Fragile X syndrome (FXS). FXS is an X-linked disorder that produces intellectual disability, cognitive impairment, epilepsy, depression and anxiety. FXS is caused by mutations in the Fragile X Mental Retardation-1 (FMR1) gene that result in the absence or a loss of function of its protein product, FMRP.

A Cell Line that Expresses secNluc and GFP to Recapitulate PMP22 Gene Expression for Studying Peripheral Neuropathy

This technology includes a cell line that expresses two reporters (a secreted luciferase, secNLuc, and GFP) in a pattern that recapitulates the endogenous expression of the peripheral myelin protein 22 (Pmp22) gene. Pmp22 is mainly expressed in the Schwann cells of the peripheral nervous system. Many neurological disorders are associated with aberrations in Schwann cells, including the most common inherited peripheral neuropathy known as Charcot-Marie-Tooth (CMT) disease. This cell line will permit the study of the regulatory elements behind the gene.

Development of a Therapy for the Treatment of Zellweger Spectrum Disorder

This technology includes a method for selecting a therapeutic effective amount of one of two compounds (including naltriben and naltrin) for the treatment of Zellweger Spectrum Disorder (ZSD), or any disease associated with peroxisome dysfunction. The compounds were identified using a cell-image based high-content screening (HCS) assay to identify small molecules that enhance peroxisome assembly in immortalized skin fibroblasts obtained from a ZSD patient.

Development and Use of O-linked beta-N-acetylglucosamine (O-GlcNAc) Transferase (OGT) Inhibitors for Multiple Conditions, Including Cancer

This technology includes the development and use of small molecules that inhibit O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT) for a variety of pathologies, including Alzheimer's disease, cancer, cancer, diabetes, and neurodegenerative disorders the treatment of cancer and as a potential antiviral. OGT is a ubiquitous enzyme that catalyzes the transfer of N-acetylglucosamine (GlcNAc) to the serine or threonine residues of nuclear and cytoplasmic proteins.

Discovery of Proteasome Inhibitors to Target PMP22 Gene Expression for the Treatment of Charcot-Marie-Tooth Disease Type 1A

This technology includes the use of proteasome inhibitors, such as Bortezomib, for the treatment of the most prevalent form of Charcot-Marie-Tooth disease type 1A (CMT1A). Duplication of the peripheral myelin protein 22 (PMP22) gene, normally involved in myelination of the peripheral nervous system, is the causative agent in most forms of CMT1A. A drug discovery program was initiated and found that proteasome inhibitors can be used to target PMP22.

Mouse Model of Cobalamin A (cblA) Class Isolated Methylmalonic Acidemia (MMA) to Study New Therapies

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. Most affected individuals display severe multisystemic disease characterized by metabolic instability, chronic renal disease, and neurological complications. Patients with the cobalamin A (cblA) subtype of MMA can have variable presentations, spanning the full spectrum of MMA associated symptoms and pathology, yet always harbor an element of clinical and biochemical responsiveness to injectable vitamin B12.