Identification and Characterization of the Wild Mouse Gut Microbiome as the Optimal Standard for Laboratory Mice

This technology includes identification of the wild mouse microbiome as a method to increase resistance to lethal viral infection. We establish that the gut microbiome of barrier-raised C57BL/6 mice is dysbiotic compared to that of their outbred, wild-living progenitors, Mus musculus domesticus. We find that the multigenerational offspring of pregnant germfree C57BL/6 mice reconstituted with the gut microbiome of wild mice exhibit a less inflammatory response and increased survival following influenza A virus infection.

Methods for Using Modulators of Extracellular Adenosine or an Adenosine Receptor To Enhance Immune Response and Inflammation

Local inflammation processes are crucially important in the host defense against pathogens and for successful immunization because proinflammatory cytokines are necessary for initiation and propagation of an immune response. However, normal inflammatory responses are eventually terminated by physiological termination mechanisms, thereby limiting the strength and duration of immune responses, especially to weak antigens. The inventors have shown that adenosine A2a and A3a receptors play a critical role in down-regulation of inflammation in vivo.

Minibody for Conditioning prior to Hematopoietic Stem Cell and Progenitor Cell Transplantation

Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Conditioning regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents and radiation. However, these regimens are associated with significant morbidity and mortality, and cannot be used safely in elderly or subjects with comorbidities.

Attenuated Host-Range Restricted Dengue Viruses Derived by Site-Directed Mutagenesis of the Conserved 3-Stem and Loop Structure in Genomic RNA for Use as Vaccines

Although flaviviruses cause a great deal of human suffering and economic loss, there is a shortage of effective vaccines. The present invention is directed toward vector stage replication-defective flaviviruses that are replication-defective in mosquito vectors that transmit them to humans. The replication-defective flaviviruses of the present invention demonstrate a limited ability to replicate in the vector organisms that transmit flaviviruses from one host to another.

Cloned Genome of Infectious Hepatitis C Virus of Genotype 2a and Uses Thereof

The current invention provides a nucleic acid sequence comprising the genome of infectious hepatitis C viruses (HCV) of genotype 2a. The encoded polyprotein differs from those of the infectious clones of genotypes 1a and 1b (U.S. Patent 6,153,421) by approximately thirty (30) percent. It covers the use of this sequence and polypeptides encoded by all or part of the sequence, in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV. Additional information can be found in Yanagi et al.

Infectious cDNA Clone of GB Virus B and Uses Thereof

The current invention provides nucleic acid sequences comprising the genomes of infectious GB virus B, the most closely related member of the Flaviviridae to hepatitis C virus (HCV). It also covers chimeric GBVB-HCV sequences and polypeptides for use in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV. Additional information can be found in Bukh et al. (1999), Virology 262, 470-478.

HCV/BVDV Chimeric Genomes and Uses Thereof

The current invention provides nucleic acid sequences comprising chimeric viral genome of hepatitis C Virus (HCV) and bovine viral diarrhea viruses (BVDV). The chimeric viruses are produced by replacing the structural region or a structural gene of an infectious BVDV clone with the corresponding region or gene of an infectious HCV. It covers the use of these sequences and polypeptides encoded by all or part of the sequences in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV.

Recombinant Proteins of the Swine Hepatitis E Virus and Their Uses as a Vaccine and Diagnostic Reagents for Medical and Veterinary Applications

This invention is based on the discovery of the swine hepatitis E virus (swine HEV), the first animal strain of HEV identified and characterized, and its ability to infect across species. The inventors have found that the swine HEV is widespread in the general pig population in the United States and other countries and that swine HEV can infect non-human primates. The inventors have amplified and sequenced the complete genome of swine HEV. The capsid gene (ORF2) of swine HEV has been cloned and expressed in a baculovirus expression system.

Anti-Arthropod Vector Vaccines, Methods of Selecting, and Uses Thereof

Leishmania parasites are transmitted to their vertebrate hosts by infected phlebotomine sand fly bites. Sand fly saliva is known to enhance Leishmania infection, while immunity to the saliva protects against infection. This invention claims nine major salivary proteins from the sand fly vector of Leishmania major, Phlebotomus papatasi, nucleic acids encoding the proteins, vaccines comprising the proteins and/or nucleic acids, and methods of producing an immune response to prevent Leshmaniasis.