Preparation of Substituted Diarylpropanamides as RORgt Antagonists for the Treatment of Th17-related Autoimmune Diseases
Generation of Anti-TAT FXN Polyclonal and Monoclonal Antibodies to TAT Domain for Use in Quantitating or Detecting TATFrataxin (TAT-FXN) and Analogs
Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis
MLL3 (KMT2C), MLL4, PA1, UTX And PTIP Antibodies for the Treatment of Development Diseases and Cancers
Monoclonal Antibody Against Human Alpha-5 Integrin that Does Not Disrupt Adhesive Function
This technology includes a rat monoclonal antibody termed mAb11 was generated against the human alpha-5 integrin subunit and can provide immunological characterizations without disrupting integrin adhesive function. It permits characterization of its localization even if the receptor is bound to its fibronectin ligand. The antibody is commercially available from Millipore Sigma.
Method To Generate Chondrocytes from Human Induced Pluripotent Stem Cells (hIPSCs) and their use in Repairing Human Injury and Degenerative Diseases
This technology includes a method for differentiating human induced pluripotent stem cells (hiPSCs) into stable chondrocytes, capable of producing cartilage, and their use in cartilage repair in human injury and degenerative diseases. In suspension culture, hiPSC aggregates demonstrate gene and protein expression patterns similar to articular cartilage.
Polymer-Cast Inserts for Cell Histology and Microscopy
Three-dimensional (3D) cell cultures systems are important for studying cell biology because they provide in vivo-like microenvironments more physiologically relevant than two-dimensional (2D) culture systems. In 3D culture systems, cells are grown in culture matrixes and turn into spheroids and organoids later processed for downstream analysis by microscopy and histology techniques. The processing of 3D cultures for analysis by microscopy or histology is laborious and time-consuming due to incompatibility of the 3D culture vessels and the microscopy and pathology blocks.
3-o-sulfo-galactosylceramide Analogs as Activators of Type II Natural Killer T (NKT) Cells to Reduce Cancer Metastasis to the Lung
Lung metastases are a sign of widespread cancer with poor survival rate. Lung malignancies can originate from almost any cancer type spread via the blood stream. Most common lung metastases are from melanoma, breast cancer, bladder cancer, colon cancer, prostate cancer, neuroblastoma, and sarcoma. Living more than 5 years with lung metastases is uncommon, and surgical procedures are only effective with localized lung metastases. Lung metastasis are extremely frequent and resistant to regular treatment due to immunosuppressive regulatory sulfatide-reactive type II NKT cells.
Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene
The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.