A Novel Strategy to Produce 6-cys Proteins Based on Pfs230D1 Domain Fusions

The Plasmodium parasite has a complex lifecycle during human infection and in the mosquito vector. Most advanced malaria vaccine candidates can confer only partial, short-term protection in malaria-endemic areas. A means of breaking the transmission of malaria to subsequent individuals could prevent a significant amount of human disease.

The primary embodiments of this technology are novel compositions of matter that produce enhanced transmission-blocking responses over current transmission blocking vaccines:

Broadly neutralizing influenza hemagglutinin stem-directed antibodies

In 2023, the World Health Organization (WHO) reported roughly 3 to 5 million cases of severe influenza worldwide, resulting in approximately 290,000 to 650,000 deaths. Given the high disease burden, the needs for both prophylactic and therapeutic influenza strategies remain significant. However, current treatments for influenza are susceptible to resistance and are useful for only a limited post-infection period.    

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Recombinant Polypeptides for Clinical Detection of Taenia solium and Diagnosis of Cysticercosis

CDC scientists have developed synthetic/recombinant polypeptides that can be used for the creation of inexpensive, high-quality cysticercosis diagnostic assays. Taenia solium is a species of pathogenic tapeworm. Intestinal infection with this parasite is referred to as taeniasis and it is acquired by ingestion of T. solium cysticerci found in raw and undercooked pork, or food contaminated with human or porcine excrement. Many infections are asymptomatic, but infection may be characterized by insomnia, anorexia, abdominal pain and weight loss.

Automated Microscopic Image Acquisition, Compositing and Display Software Developed for Applied Microscopy/Cytology Training and Analysis

Micro-Screen is a CDC developed software program designed to capture images and archive and display a compiled image(s) from a portion of a microscope slide in real time. This program allows for the re-creation of larger images that are constructed from individual microscopic fields captured in up to five focal planes and two magnifications. This program may be especially useful for the creation of data archives for diagnostic and teaching purposes and for tracking histological changes during disease progression.

Novel One-Well Limiting-Antigen Avidity Enzyme Immunoassay to Detect Recent HIV-1 Infection Using a Multi-subtype Recombinant Protein

This CDC developed Limiting-Antigen avidity Enzyme Immunoassay (LAg-avidity-EIA) provides an easy way to measure increasing binding strength (avidity) of HIV antibodies as part of maturation HIV antibodies after seroconversion, providing a method to distinguish early-stage from long-term HIV-1 infection. Surveillance of HIV-1 provides information on prevalence rates of the disease, but determination of new infection rates (HIV-1 incidence) is difficult to deduce. Longitudinal follow up is expensive and can be biased.

Novel In Vitro Granuloma Model for Studying Tuberculosis and Drug Efficacy

CDC researchers have developed an in vitro model system designed to simulate early-stage Mycobacterium tuberculosis infection and induced granuloma formation. This modeling platform can be used for studying tuberculosis pathogenicity, identifying phenotypically-interesting clinical isolates, studying early-stage host cytokine/chemokine responses, and in vitro candidate-drug screening.

Diagnostic Antigens for the Identification of Latent Tuberculosis Infection

CDC researchers have developed technology for sero-diagnosis of typically symptomless latent stage tuberculosis disease, posing a threat to individuals under immunosuppressive or anti-inflammatory therapies. Specifically, this diagnostic approach exploits M. tuberculosis secreted latency specific antigens, such as alpha-crystallin, in the blood or urine of patients.

Multiple Antigenic Peptide Assays for Detection of HIV and SIV Type Retroviruses

CDC scientists have developed multiple antigenic peptide immunoassays for the detection of human immunodeficiency virus (HIV) and/or simian immunodeficiency virus (SIV). HIV can be subdivided into two major types, HIV-1 and HIV-2, both of which are believed to have originated as result of zoonotic transmission. Humans are increasingly exposed to many different SIVs by wild primates. For example, human exposure to SIVs frequently occurs as a consequence of the bush meat hunting and butchering trade in Africa.

Multivalent, Multiple-Antigenic-Peptides for Serological Detection of HIV-1 Groups -M, -N, -O, and HIV-2

This CDC-developed invention pertains to multivalent antigenic peptides (MAPs) that can be used in a variety of HIV/AIDS diagnostics. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is subdivided into groups M, N, and O, while HIV-2 is subdivided into subtypes A and B. Within HIV -1 group M, several different subtypes and numerous forms of recombinant viruses exist. To detect all types, groups, and subtypes of HIV by serological methods, a mixture of antigens derived from different viral strains representing different HIV types and subtypes is needed.