National Cancer Institute dosimetry system for Nuclear Medicine (NCINM) Computer Program

Nuclear medicine is the second largest source of medical radiation exposure to the general population after computed tomography imaging. Imaging modalities utilizing nuclear medicine produce a more detailed view of internal structure and function and are most commonly used to diagnose diseases such as heart disease, Alzheimer’s and brain disorders. They are used to visualize tumors, abscesses due to infection or abnormalities in abdominal organs.

Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation

Medical image datasets are an important clinical resource. Effectively referencing patient images against similar related images and case histories can inform and produce better treatment outcomes. Labeling and identifying disease features and relations between images within a large image database has not been a task capable of automation. Rather, it is a task that must be performed by highly trained clinicians who can identify and label the medically meaningful image features.

Eye Tracking Application in Computer Aided Diagnosis and Image Processing in Radiology

Medical imaging is an important resource for early diagnostic, detection, and effective treatment of cancers. However, the screening and review processes for radiologists have been shown to overlook a certain percentage of potentially cancerous image features. Such review errors may result in misdiagnosis and failure to identify tumors. These errors result from human fallibility, fatigue, and from the complexity of visual search required.

Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Extracellular Vesicles (EVs), including exosomes and microvesicles, are nanometer-sized membranous vesicles that can carry different types of cargos, such as proteins, nucleic acids and metabolites. EVs are produced and released by most cell types. They act as biological mediators for intercellular communication via delivery of their cargos. This unique ability spurred translational research interest for targeted delivery of therapeutic molecules to treat a wide range of diseases. EVs also contain interesting information of their specific cellular origin.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The baculovirus-based protein expression system has gained increased prominence as a method for expressing recombinant proteins that are used in a wide range of biomedical applications. An important step in the use of this system is the ability to determine the virus infectious titer, i.e., the number of active baculovirus particles produced during an infection of the insect host cell.

A peptide hydrogel for use in vascular anastomosis

In collaboration with surgery specialists from Johns Hopkins University, researchers at the National Cancer Institute (NCI) developed novel hydrogel compositions and methods of using them in the microsurgical suturing of blood vessels, which is particularly beneficial for surgeons in whole tissue transplant procedures. The lead candidate electropositive hydrogels, called APC1, was demonstrated in anastomosis mice models to be well tolerated, biocompatible, and non-toxic.

Improved PE-based Targeted Toxins: A Therapeutic with Increased Effectiveness

Targeted toxins (e.g., immunotoxins) are therapeutics that have at least two important components: (1) a toxin domain that is capable of killing cells and (2) a targeting domain that is capable of selectively localizing the toxic domain to only those cells which should be killed. By selecting a targeting domain that binds only to certain diseased cells (e.g., a cell which only expresses a cell surface receptor when in a diseased state), targeted toxins can kill the diseased cells while allowing healthy, essential cells to survive.

Conformational Restriction of Cyanine Fluorophores in Far-Red and Near-IR Range

Small molecule fluorescent probes are important tools in diagnostic medicine. Existing far-red and near-IR cyanine fluorophores (e.g. Cy5, Alexa 647, Cy7, ICG) are active in the far-red and near-range, but these agents suffer from modest quantum yields (brightness) which limit wide utility. It has been reported that the limited brightness of these fluorophores is due to an excited-state C-C rotation pathway.

Machine Learning and/or Neural Networks to Validate Stem Cells and Their Derivatives for Use in Cell Therapy, Drug Delivery, and Diagnostics

Many biological and clinical procedures require functional validation of a desired cell type. Current techniques to validate rely on various assays and methods, such as staining with dyes, antibodies, and nucleic acid probes, to assess stem cell health, death, proliferation, and functionality. These techniques potentially destroy stem cells and risk contaminating cells and cultures by exposing them to the environment; they are low-throughput and difficult to scale-up.

Engineered Biological Pacemakers

The National Institute on Aging's (NIA) Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

A common symptom of many heart diseases is an abnormal heart rhythm or arrhythmia. While effectively improving the lives of many patients, implantable pacemakers have significant limitations such as limited power sources, risk of infections, potential for interference from other devices, and absence of autonomic rate modulation.