Radioligand for imaging brain PDE4 subtype D receptors with positron emission tomography

The technology relates to the first radioligands that can be used to image and quantify the enzyme phosphodiesterase subtype D (PDE4D). The PDE4D proteins have a role in carrying out signal transduction pathways in several cell types and is thought to be the key target of various antidepressants. Current work with imaging the radioligands in monkey brains using positron emission tomography (PET) has been successful, and further work with humans is needed.

Longer-lived Mouse Models for Studying Gaucher Disease

The invention is a novel longer-lived mouse model for Gaucher disease. Gaucher disease is a genetic disorder that results from deficiencies in the enzyme glucocerebrosidase (GBA). The use of animal models to study how the disease progresses has been invaluable in research of this disorder. However, existing mouse models have been limited due to early mortality because the GBA enzyme plays an important role in lysosomal storage.

Neuronal Decoding Algorithm for Prosthetic Limbs

The invention is a new algorithm for decoding neuronal responses based on the discovery that neuronal spike trains can be described using order statistics. The device has applications in the direct control of prosthetic limbs by neuronal signals originating from electrodes placed in the brain. The method allows for decoding neuronal responses by monitoring sequences of potentials from neurons while specific motor tasks are carried out.

HIV-Dependent Expression Vector

This invention provides a DNA construct that can be useful for both diagnostics and AIDS therapeutics. The construct can be incorporated into a retrovirus or into a cell line. This construct mediates the expression of a selected gene in the presence of HIV replication, but is silent in the absence of HIV. The cell line with the incorporated construct can be used as an indicator line for the presence of replication-competent HIV. The virus containing the construct can be used to co-infect a population of HIV-infected cells.

Novel Method of Fat Suppression in Steady State Free Precession (SSFP) Based Magnetic Resonance Imaging (MRI)

Available for licensing is a technique for improving magnetic resonance imaging (MRI) that employs steady state free precession (SSFP). One such technique, fast imaging with steady-state free precession (FISP), is a well established and is a fast MR imaging method commonly used to evaluate cardiovascular anatomy and function. FISP provides high signal to noise ratio (SNR) images with excellent contrast between blood and the myocardium. However, these images are often contaminated with high signal from fatty tissue resulting in image artifacts.

Methods of Synthesis of the Ketamine Analogs (2R, 6R)-kydroxynorketamine and (2S, 6S)-hydroxynorketamine for the Treatment of Pain and other Anxiety-related Disorders

This technology includes a method for synthesizing the ketamine analogs (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-hydroxynorketamine that may be useful for the treatment of pain, depression, anxiety, and related disorders. The drug ketamine was first used as an anesthetic but was found to be an effective treatment in a range of conditions, including paint, treatment-resistant bipolar depression, and other anxiety-related disorders. However, the routine use of ketamine is hindered by unwanted side effects, including the potential for abuse.

Use of the Ketamine Metabolite (R,6R)-hydroxynorketamine in Depression

This technology includes the identification and use of a ketamine metabolite, (2R,6R)-2-amino-2-(2-chlorophenyl)-6-hydroxycyclohexanone (HNK), for the treatment of depression. Ketamine is an NMDA receptor antagonist that exerts a rapid and sustained antidepressant and anti-suicidal effect. However, even low doses of ketamine has addictive and psychomimetic effects. The downstream metabolite, (2R,6R)-HNK, does not inhibit the NMDA receptor but recapitulates the antidepressant and anti-suicidal effect of ketamine.