Amelioration of Inflammatory Arthritis Targeting the Pre-ligand Assembly Domain (PLAD) of Tumor Necrosis Factor Receptors

The invention relates to compositions of matter and methods for treating arthritis by modulating Tumor Necrosis Factor Alpha (TNF-alpha) signaling. TNF-alpha plays a key role in the pathogenesis of numerous diseases including rheumatoid and septic arthritis, and other autoimmune and inflammatory diseases. TNF-alpha mediates its effects through receptors that contain a Pre-ligand Assembly Domain (PLAD). The inventors have discovered compounds that interfere with PLAD can block the effects of TNF-alpha in vitro.

Treatment for Ichthyosiform Skin Diseases

A synthetic composition that contains the transglutaminase 1 (TGase I) enzyme and a lipid vesicle, which can be used to provide ameliorative therapy for inherited autosomal recessive ichthyoses (ARI). Icthyoses are rare inherited skin disorders that result in extensive scaling of the skin. Because this abnormality can affect heat and fluid transfer through the skin, individuals with this disease may have an increased risk for dehydration and skin infections. Each year, more than 16,000 babies are born with some form of ichthyosis. Ichthyosis affects people of all ages, races and gender.

Human DNA Polymerase Gamma for Testing the Effect of Drugs on Mitochondrial Function

One of the primary means for treating HIV infection is the use of antiviral nucleotide or nucleoside analogs. These analogs work by inhibiting the activity of reverse transcriptase, the enzyme responsible for preparing the HIV genome for integration into the DNA of the host cell. Although these analogs do not have an effect on the polymerases responsible for replicating the human genome, the polymerase responsible for replicating the mitochondrial genome is sensitive to these analogs.

Engineering Neural Stem Cells Using Homologous Recombination

Methods for modifying the genome of a Neural Stem Cell (NSC) are disclosed. Also, methods for differentiating NSCs into neurons and glia are described. NSCs are multipotent, self-renewing cells found in the central nervous system, capable of differentiating into neurons and glia. NSCs can be generated efficiently from pluripotent stem cells (PSCs) and have the capacity to differentiate into any neuronal or glial cell type of the central nervous system.

Chimeric Antibodies Against Hepatitis B e-Antigen

The invention relates to recombinant chimeric rabbit/human monoclonal antibody fragments (Fabs) against hepatitis B Virus e-antigen (HBeAg), notably Fab me6. Viral hepatitis is the seventh leading cause of death worldwide. Hepatitis B core antigen (HBcAg) forms an icosahedral structure containing the viral genome. Both the HBcAg and the HBeAg of interest here are expressed by two different start codons of the viral C gene. Unlike the related HBcAg which activates type 1 T helper (Th1) cells leading to immune attack, the HBeAg activates Th2 cells which promote immune tolerance.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Treatment of Periodontal Disease via ENPPI Inhibition

This technology focuses on enhancing cementum production, a key component in treating periodontal regression. The method involves inhibiting ectonucleotide pyrophosphatase phosphodiesterases (ENPP1), enzymes that play a significant role in mineralization processes. Pyrophosphate (PPi) is known to impede the growth of hydroxyapatite crystals, essential for mineralization. ENPP1 catalyzes the hydrolysis of ATP, generating PPi, which then hinders mineralization.

Engineered Human Induced Pluripotent Stell Cell (iPSC) Lines for Multiple Therapeutic and Diagnostic Uses

This technology includes ten engineered human induced pluripotent stem cell (iPSC) lines with reported genes inserted into safe harbor sites for use in therapy and diagnostic screening assay development as well as basic stem cell biology research. These cell lines have the potential to differentiate into all cells in the body, and theoretically can proliferate/self-renew indefinitely.