Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Engineered Human Induced Pluripotent Stell Cell (iPSC) Lines for Multiple Therapeutic and Diagnostic Uses

This technology includes ten engineered human induced pluripotent stem cell (iPSC) lines with reported genes inserted into safe harbor sites for use in therapy and diagnostic screening assay development as well as basic stem cell biology research. These cell lines have the potential to differentiate into all cells in the body, and theoretically can proliferate/self-renew indefinitely.

Antibodies Against TL1A, a TNF-Family Cytokine, for the Treatment and Diagnosis of Autoimmune Inflammatory Diseases

Autoimmune inflammatory diseases occur in greater than five percent of the United States population; this disease group includes asthma, multiple sclerosis, rheumatoid arthritis, and lupus. Treatments generally include immunosuppressants or anti-inflammatory drugs, which can have serious side effects; recently, more specific immunomodulatory therapies such as TNF-alpha antagonists have been developed.

Human iPSC-Derived Mesodermal Precursor Cells and Differentiated Cells

Cells, cell culture methods, and cell culture media compositions useful for producing and maintaining iPSC-derived cell lines that are of higher purity and maintain cell type integrity better than current iPSC-derived cell lines are disclosed. Human induced pluripotent stem cells (hiPSCs) can be generated by reprogramming somatic cells by the expression of four transcription factors. The hiPSCs exhibit similar properties to human embryonic stem cells, including the ability to self-renew and differentiate into all three embryonic germ layers: ectoderm, endoderm, or mesoderm.

Staphylococcus Epidermidis Isolates from Human Skin Samples for Use as Clinical Molecular Markers

This technology includes a catalog of commensal and pathogenic staphylococci from human skin for utilization as clinical molecular markers of skin conditions and infections. The study of microbial diversity of human skin in both healthy and disease states is important to develop tools to track infections, outbreaks, and multi-drug resistant organisms, particularly in atopic dermatitis, eczema and other microbial-associated infections. Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates.

Astrocyte Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Potential Therapeutic Use

This technology includes an innovative method for differentiating astrocytes from neural stem cells (NSCs). The process involves using Life Technologies StemPro embryonic stem cell serum-free medium to initially guide NSCs towards a neuronal lineage. Over a period of 28-35 days, as the cells are continually passaged, neurons gradually die off, leading to the proliferation of astrocytes. By the end of this differentiation protocol, approximately 70% of the cells exhibit markers characteristic of mature astrocytes, specifically GFAP.

A Neural Stem Line from a Niemann Pick C (NPC) Type 1 Patient for Therapy Development

This technology includes a neural stem cell (NSC) line derived from a Niemann Pick C (NPC) patient, aimed at advancing research and drug development for NPC, an inherited neurodegenerative disorder characterized by the accumulation of cholesterol in neurons. The NSCs, which serve as a crucial intermediate cell type, can be differentiated into any neuronal or glial cell of the brain or spinal cord under appropriate culture conditions. These cells originate from fibroblasts reprogrammed into induced pluripotent stem cells.

Neural Stem Cells from an iPSC Line Ubiquitously Expressing Green Fluorescent Protein for Basic Science Research and Cell Line Tracking

This technology involves neural stem cells (NSCs) derived from pluripotent stem cells (PSCs) that can differentiate into neurons and glia. The key feature of this technology is the CY2 EEF1A1 GFP iPSC line, which includes a green fluorescent protein (GFP) expressed under the EEF1A1 promoter, leading to its ubiquitous expression in cells. This characteristic makes the NSCs and the neural cells differentiated from this line exhibit green fluorescence. Such cells, when transplanted into animal models like mice and rats, can be easily tracked due to their fluorescence.

Neuronal Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Therapeutic Development

This technology involves an innovative method for differentiating neural stem cells (NSCs) into neurons, primarily for use in basic science research and in developing therapies for brain and spinal cord disorders. Existing methods for generating neurons from NSCs typically result in high efficiency but low survival rates, especially when neurons are dissociated and regrown. This new method utilizes Life Technologies StemPro embryonic stem cell serum-free medium, which significantly enhances differentiation efficiency into neurons with minimal cell death.