mTOR Inhibition for the Prevention of Epithelial Stem Cell Loss and Mucositis
Degrader Molecules for hRpn13Pru, PCLAF, RRM2 and Other KEN Box-containing Proteins
Summary:
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for three small molecules that target hRpn13, an overexpressed protein in certain cancers.
Description of Technology:
Reverse Thiazine Kinase Inhibitors
Summary
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a class of novel aplithianine-derived small molecule analogs that compete with ATP for binding on a range of clinically relevant kinases including:
T Cell Receptors Targeting the KRAS G13D Mutation in the Context of HLA-A11:01 for Research Use
Summary:
The National Cancer Institute (NCI) has identified HLA-A11:01-restricted T Cell Receptors (TCRs) targeting the KRAS G13D mutation. The NCI seeks licensees for the use of these TCRs in research.
Description of Technology:
Directed Acetylation of Cytidine in Cellular mRNA through Engineered snoRNA Adapters for the Treatment of Haploinsufficiencies
Summary:
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for engineered chimeric snoRNA guides that recruit NAT10 to a specific target and cause directed acetylation of the target. They could be used to treat haploinsufficiency-associated disorders or diseases.
Description of Technology:
Combined RNA and DNA Vaccination Strategy for Improving the Vaccine Immune Response
The development of an effective HIV vaccine has been ongoing. HIV sequence diversity and immunodominance are major obstacles in the design of an effective vaccine. Researchers at the National Cancer Institute (NCI) developed a novel vaccine strategy combining both DNA and mRNA vaccination to induce an effective immune response. This combination strategy could also be used to develop vaccines against cancer or other infectious diseases (ex. SARS-CoV-2).
Methods of Predicting Patient Treatment Response and Resistance via Single-Cell Transcriptomics of Their Tumors
Tailoring the best treatments to cancer patients remains a highly important endeavor in the oncology field. However, personalized treatment courses are challenging to determine, and technologies or methods that can successfully be employed for precision oncology are lacking.
National Cancer Institute Dosimetry System for Nuclear Medicine (NCINM) Computer Program
Nuclear medicine is the second largest source of medical radiation exposure to the general population after computed tomography imaging. Imaging modalities utilizing nuclear medicine produce a more detailed view of internal structure and function and are most commonly used to diagnose diseases such as heart disease, Alzheimer’s and brain disorders. They are used to visualize tumors, abscesses due to infection or abnormalities in abdominal organs.
National Cancer Institute dosimetry system for Computed Tomography (NCICT) Computer Program
About half of the per capita dose of radiation due to medical exposures is provided by computed tomography (CT) examinations. Approximately 80 million CTs are performed annually in the United States. CT scans most commonly look for internal bleeding or clots, abscesses due to infection, tumors and internal structures. Although CT provides great patient benefit, concerns exist about potential associated risks from radiation doses – especially in pediatric patients more sensitive to radiation.