T24 Antigen for Diagnosing or Treating Taenia solium Cysticercosis

In order to develop a simple detection assay for field use, CDC researchers cloned and sequenced the Taenia solium T24 diagnostic protein. The T24 sequences can be used to detect and diagnose T. solium infection or can be formulated into a pharmaceutical composition. T. solium is a species of tapeworm. Intestinal infection with T. solium is referred to as taeniasis. Many taeniasis infections are asymptomatic but may be characterized by insomnia, anorexia, abdominal pain and weight loss. Cysticercosis infection, which can be fatal, may develop if T.

Peptide Vaccines Against Group A Streptococci

This invention relates to synthetic immunoreactive peptides, which are portions of the M proteins of the most prevalent Group A Streptococcus (GAS) serotypes in the United States. These peptides may be useful in development of a flexible, multivalent GAS vaccine. They can be recognized by M type-specific antibodies and are capable of eliciting functional opsonic antibodies. Additionally, the peptides or isolated antibodies raised in response to the peptides may be useful for GAS diagnostics.

Novel Targets to Prevent Borrelia burgdorferi Infection and Lyme Disease

B. burgdorferi-infected ticks can cause Lyme disease in mammalian hosts. This technology relates to the use of B. burgdorferi outer surface proteins (BBA64 and BBA66) as Lyme disease vaccine candidates. In vivo animal studies demonstrate these outer surface proteins inhibit tick-to-host B. burgdorferi transmission. Presently, there is no vaccine approved for Lyme disease.

Exposure and Activity Detection Assays for Anthrax Lethal Factor and Lethal Toxin

This CDC developed invention identifies an assay for extremely fast and sensitive detection of Bacillus anthracis lethal toxin (LTx), the toxin responsible for the lethal effects of anthrax infection. This assay has already been successfully tested in animals and will allow for early detection of anthrax exposure and screening of lethal factors to monitor anthrax toxicity, for example for vaccine trial candidates.

Local Positioning System for Position-Time-Condition Correlation, Data-logging and Analysis

This CDC-developed technology describes an automated system for monitoring worker hazard exposures by recording data about where and when hazards occur in a workplace or other environment. This allows the hazards to be avoided and harmful exposures and risks reduced. This field-tested technology consists of an integrated, hand-held electronics instrument and software system that will precisely correlate multiple exposure levels with position coordinates of the user and features real-time data acquisition.

Simple, Field-Usable Fluorescence-Based Isothermal LAMP Assay for the On-Site Diagnosis of Malaria

CDC researchers have developed improved Loop-Mediated Isothermal Amplification (LAMP) assays for the nucleic acid-based diagnosis of malaria in field settings. The approach employs Plasmodium genus-specific LAMP primers and a portable tube scanner to run the LAMP reaction and measure fluorescence signal (e.g., SYBR green) as a measure of DNA amplification in real time. Using this platform, the researchers were able to detect several different species of the human malaria parasites.

A Device for Simultaneous and Rapid Diagnosis and Detection of Recent and Long Term HIV-1 Infection

CDC scientists have developed a device for simultaneous rapid diagnosis of HIV infection and for identification of recent HIV-1 infection. The device utilizes immunochromatographic or flow-through principles to detect HIV antibodies within clinical samples. This device may be used for diagnosis of HIV infection, as well as to distinguish between recent infection (6 months) and long-term infection (>1 year).

MDCK-based Reporter System for Detection of Influenza Viruses, Antiviral Drug Screening, and Analysis of Neutralizing Antibodies

CDC researchers have developed a Madin-Darby Canine Kidney (MDCK) reporter cell line that is exceptionally permissive for influenza virus replication and provides a highly specific, sensitive approach for the simultaneous detection and isolation of influenza viruses. Simplified antibody neutralization assays and high-throughput antiviral drug screening can also be easily and efficiently implemented using this reporter system.