Multivalent, Multiple-Antigenic-Peptides for Serological Detection of HIV-1 Groups -M, -N, -O, and HIV-2

This CDC-developed invention pertains to multivalent antigenic peptides (MAPs) that can be used in a variety of HIV/AIDS diagnostics. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is subdivided into groups M, N, and O, while HIV-2 is subdivided into subtypes A and B. Within HIV -1 group M, several different subtypes and numerous forms of recombinant viruses exist. To detect all types, groups, and subtypes of HIV by serological methods, a mixture of antigens derived from different viral strains representing different HIV types and subtypes is needed.

Air Quality Assurance: A Monitor for Continuous, Simultaneous Analysis of Atmospheric or Aerosolized Particulate Mixtures

This technology pertains to monitors for measuring the mass concentration of ambient particulate matter in an atmosphere containing both larger/coarser (e.g., respirable dust) and smaller/finer (sub-micrometer particles such as diesel particulate matter - DPM) particulate mixtures. The monitoring device can be configured for operation with a controller unit adapted to ionization sensor and/or light-scattering modules. The controller translates the sensor output signal into a quantifiable value, determining mass concentration of particulate matter within the ionization chamber.

Rabies Vaccine for the Oral Immunization of Domesticated Animals, Wildlife and Feral Animals

This invention, developed by the CDC and collaborators, entails a live, attenuated recombinant rabies virus vaccine that can elicit an effective anti-rabies immune response in animal recipients. Inoculation with a live, attenuated, rabies virus allows for the optimized production of immunity in the absence of pathogenicity. Oral administration of rabies vaccines is often a preferred route of vaccine delivery because it is most effective in wildlife. Unfortunately, availability of an oral vaccine for canines has been a significant hurdle to date.

Cable-line Safety System: Electro/hydraulic Emergency Stop Device for a Winch, Drum or Capstan

This CDC-developed invention entails a system of electrical and hydraulic circuits used to stop a rotating winch in an emergency. Amongst other locations, one stop switch can be positioned on a capstan winch horn. This location makes it available to a victim entangled in rope being retrieved on a gypsy drum. As designed, the stop circuit could be used with an electrically, hydraulically or pneumatically operated winch. A variant of this safety system has been successfully tested on a purse seining fishing vessel in Alaskan waters.

Mining Safety: Personal Dust Monitor Filters for Accurate, Quantifiable Spectrometric Analysis and Assessment of Worker Exposure Levels

This CDC-developed invention pertains to a novel dust monitor filter that is specially constructed of organic materials for spectrometric analysis, ultimately allowing for detection and accurate quantification of a particular chosen analyte (e.g., crystalline silica/quartz dust that may lead to silicosis).

Computer Controlled Aerosol Generator with Multi-Walled Carbon Nanotube Inhalation Testing Capabilities

This invention pertains to a CDC developed sonic aerosol generator that provides a controllable, stable concentration of particulate aerosol over a long period of time for aerosol exposure studies. Specifically, in situ testing data indicate uniform aerosol stability can be maintainable for greater than 30 hours at concentrations of 15 mg/m3 or more. Additionally, the technology was specifically developed for, and validated in, animal studies assessing exposure to airborne multi-walled carbon nanotubes (MWCNT).

Human Influenza Virus Real-time RT-PCR: Detection and Discrimination of Influenza A (H3N2) Variant from Seasonal Influenza A (H3N2) Viruses, Including H3v and Seasonal H3 Assays

This invention relates to methods of rapidly detecting influenza, including differentiating between type and subtype. CDC researchers have developed a rapid, accurate, real-time RT-PCR assay that has several advantages over culture and serological tests, which require 5 to 14 days for completion; this assay can also be easily implemented in kit form. To date, hundreds of human cases of infection with the H3N2 variant virus have been confirmed.

Silica Exposure Safety: Mini-baghouse Systems and Methods for Controlling Particulate Release from Large Sand Transfer Equipment

CDC/NIOSH scientists have developed an effective point-source control for silica-containing dusts that can be generated from machinery on sites where hydraulic fracturing is occurring. The CDC/NIOSH mini-baghouse retrofit assembly is a bolt-on control designed to contain silica-containing respirable dusts generated during refill operations of sand movers during hydraulic fracturing.

Dengue Vaccines: Tools for Redirecting the Immune Response for Safe, Efficacious Dengue Vaccination

This CDC-developed invention relates to dengue vaccines that have been specifically developed for improved efficacy and directed immune response to avoid antibody-dependent enhancement (ADE) safety issues that, theoretically, may be associated with dengue vaccines and vaccinations. Dengue viral infection typically causes a debilitating but non-lethal illness in hosts.

Compositions and Methods for Improved Lyme Disease Diagnosis

This CDC-developed technology entails novel compositions and methods related to the diagnosis of Lyme disease. Lyme disease, caused by the Borrelia burgdorferi bacterium, is the most common tick-borne infectious disease in the US and Europe. Diagnosis of Lyme disease is particularly challenging as symptoms often appear long after exposure. At present, the only FDA-approved diagnostic for Lyme disease involves patient blood tests for particular antibodies; these include an ELISA to measure patient antibody levels and a Western blot assay to detect antibodies specific to B.