A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.

Fully Human Antibody Targeting Tumor Necrosis Factor Receptor Type 2 (TNFR2) for Cancer Immunotherapy

Tumor necrosis factor receptor type 2 (TNFR2)-expressing regulatory T cells (Tregs), present in the tumor microenvironment, play an important role in tumor immune evasion. TNFR2 plays a crucial role in stimulating the activation and proliferation of Tregs, a major checkpoint of antitumor immune responses. In addition to its expression on Tregs, TNFR2 is also known to be overexpressed on some types of tumors and the survival and growth of these tumor cells is promoted by ligands of TNFR2.

Therapeutic Antitumor Combination Containing TLR4 Agonist HMGN1

Immune checkpoint inhibitors (e.g. CTLA-4, PD-L1) have recently shown significant promise in the treatment of cancer.  However, when used alone, these checkpoint inhibitors are limited by the absence or repression of immune cells within the targeted cancer.  For those cancers associated with these limited immune systems, there remains a need for effective therapies.  Agents capable of recruiting and activating immune cells to these types of cancers could extend the overall and complete response rates of combination therapies within the immunooncology domain. 

Polypeptides for Stimulation of Immune Response (Adjuvants)

HMGN polypeptides belong to the high mobility group (HMG) family of chromosomal binding peptides. HMGN polypeptides typically function inside the cell nucleus to bind to DNA and nucleosomes and regulate the transcription of various genes. HMGN polypeptides also can be released by peripheral blood mononuclear cells. However, the extracellular release of a HMGN polypeptide initiates activation of the immune system. Therefore, it has potential use as a biological therapeutic for stimulating an immune response.

Anti-Viral Compounds that Inhibit HIV Activity

Several novel tropolone derivatives have been identified that inhibit HIV-1 RNase H function and have potential for anti-viral activity due to reduced cellular toxicity.  Inhibiting RNase H function is a potential treatment for many viral infections, since RNase H function is essential for viral replication for many pathogenic retroviruses such as HIV-1 and HIV-2.  Although many hydroxytropolone compounds are potent RNase H inhibitors biding at the enzymatic active site, they are limited as therapeutic candidates by their toxicity in mammalian cells.  The toxicity thought to

Small Molecule Inhibitors of Lactate Dehydrogenase as an Anti-Cancer Therapy

This technology includes a novel pyrazole-based compound NCGC00274266 (MLS000714501) that inhibits LDH-A with an IC50 of approximately 20 µM with low efficacy that can be used as an anti-cancer therapeutic. Structure-activity relationship studies on this compound led to hydroxypryazole-based compounds and discovery that the hydroxypyrazole compound and related analogs demonstrated a strong metal-dependent activity.

A Novel Carbohydrate Antibody to GalNac1-3Gal and Its Application for Cancer Diagnostic and Prognosis

Cervical cancer is one of the most common cancers among women worldwide. Currently, physical descriptors such as tumor size and depth are the primary factors used for deciding the course of treatment. Despite significant efforts to identify prognostic biochemical markers or therapeutic targets to improve diagnosis and treatment, none have achieved routine clinical use. An example of one previously identified biomarker is the Tn antigen, a carbohydrate moiety composed of a GalNAc residue linked to serine or threonine.