Nitric Oxide-Releasing Polysaccharide Materials
Diazeniumdiolates comprise a diverse class of NO-releasing compounds and materials that are known to exhibit sufficient stability to be useful as therapeutics.
Diazeniumdiolates comprise a diverse class of NO-releasing compounds and materials that are known to exhibit sufficient stability to be useful as therapeutics.
The invention relates to novel lipid-based nanoparticles (liposomes) for use in targeted, on demand and on site drug delivery. The particles include a wall surrounding a cavity, wherein the wall is comprised of:
phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000), and
This technology consists of highly specific rabbit monoclonal antibodies reactive with phosphorylated tyrosine located at amino acid 1235 in the human MET sequence. Binding to this pYl235 residue is independent of the phosphorylation of other tyrosines in the vicinity (1230 and 1234), does not cross-react with these nearby phosphotyrosine residues, and does not occur when Y1235 is unphosphorylated.
Most early work on CD133 was carried out using one of two monoclonal antibodies (mAbs), AC133 and AC141, which recognize an undefined glycosylated epitope of CD 133.
The invention listed below is owned by an agency of the U.S. Government and is available for licensing and/or co-development in the U.S. in accordance with 35 U.S.C. 209 and 37 CFR part 404 to achieve expeditious commercialization of results of federally-funded research and development.
Tissues samples collected during medical procedures, such as biopsies, are used to diagnose a wide variety of diseases. Before diagnosis, patient samples are typically processed by fixation and paraffin embedding. This fixation/embedding process is used to preserve tissue morphology and histology for subsequent evaluation. Unfortunately, most fixative agents can damage or destroy nucleic acids (RNA and DNA) and damage proteins during the fixation process, thereby potentially impairing diagnostic assessment of tissue.
Researchers at the National Cancer Institute’s Biopharmaceutical Development Program recently developed massively parallel sequencing methods for virus-derived therapeutics such as viral vaccines and oncolytic immunotherapies.
This technology provides improved processes for production and purification of nucleic acid-containing compositions, such as non-naturally occurring viruses, for example, recombinant polioviruses that can be employed as oncolytic agents. Some of the improved processes relate to improved processes for producing viral DNA template.
The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value.
Certain members of the cucurbitacin and Withanolide family have been identified that can sensitize some tumor cell lines to cell death (apoptosis) on subsequent exposure of the cells to pro-apoptotic receptor agonists (PARAS) of the TRAIL "death receptors". These PARAS include TRAIL itself, and agonist antibodies to two of its receptors death receptor-4 (DR4 or TRAIL-R1) and death receptor 5 (DR5, TRAIL-R2).